Periodicities in linear fractional recurrences: degree growth of birational surface maps

E Bedford, K Kim - Michigan Mathematical Journal, 2006 - projecteuclid.org
Periodicities in Linear Fractional Recurrences: Degree Growth of Birational Surface Maps
Page 1 Michigan Math. J. 54 (2006) Periodicities in Linear Fractional Recurrences: Degree …

Dynamics of rational surface automorphisms: linear fractional recurrences

E Bedford, K Kim - Journal of Geometric Analysis, 2009 - Springer
We consider the family fa, b (x, y)=(y,(y+ a)/(x+ b)) of birational maps of the plane and the
parameter values (a, b) for which fa, b gives an automorphism of a rational surface. In …

Laminar currents and birational dynamics

R Dujardin - 2006 - projecteuclid.org
We study the dynamics of a bimeromorphic map X→ X, where X is a compact complex
Kähler surface. Under a natural geometric hypothesis, we construct an invariant probability …

Energy and invariant measures for birational surface maps

E Bedford, J Diller - 2005 - projecteuclid.org
Given a birational self-map of a compact complex surface, it is useful to find an invariant
measure that relates the dynamics of the map to its action on cohomology. Under a very …

Invariant curves for birational surface maps

J Diller, D Jackson, A Sommese - Transactions of the American …, 2007 - ams.org
We classify invariant curves for birational surface maps that are expanding on cohomology.
When the expansion is exponential, the arithmetic genus of an invariant curve is at most …

Global dynamics of the real secant method

A Garijo, X Jarque - Nonlinearity, 2019 - iopscience.iop.org
We investigate the root finding algorithm given by the secant method applied to a real
polynomial p as a discrete dynamical system defined on. We study the shape and …

Dynamical degrees of birational maps from indices of polynomials with respect to blow-ups I. General theory and 2D examples

J Alonso, YB Suris, K Wei - arXiv preprint arXiv:2303.15864, 2023 - arxiv.org
In this paper we address the problem of computing $\text {deg}(f^ n) $, the degrees of
iterates of a birational map $ f:\mathbb {P}^ N\rightarrow\mathbb {P}^ N $. For this goal, we …

[图书][B] Quelques aspects des systèmes dynamiques polynomiaux

S Cantat, A Chambert-Loir, V Guedj - 2010 - smf.emath.fr
Ce volume regroupe quatre articles concernant l'itération des transformations polynomiales
ou rationnelles des variétés projectives. Le but n'est pas d'établir un panorama global de la …

Lee–Yang zeros for the DHL and 2D rational dynamics, I. Foliation of the physical cylinder

P Bleher, M Lyubich, R Roeder - Journal de Mathématiques Pures et …, 2017 - Elsevier
In a classical work of the 1950's, Lee and Yang proved that the zeros of the partition
functions of a ferromagnetic Ising model always lie on the unit circle. Distribution of these …

[PDF][PDF] Degree complexity of a family of birational maps

E Bedford, K Kim, TT Tuyen, N Abarenkova… - arXiv preprint arXiv …, 2007 - arxiv.org
arXiv:0711.1186v2 [math.DS] 9 Nov 2007 Page 1 arXiv:0711.1186v2 [math.DS] 9 Nov 2007
Degree Complexity of a Family of Birational Maps Eric Bedford*, Kyounghee Kim, Truong Trung …