Exceptional collections for mirrors of invertible polynomials

D Favero, D Kaplan, TL Kelly - Mathematische Zeitschrift, 2023 - Springer
We prove the existence of a full exceptional collection for the derived category of equivariant
matrix factorizations of an invertible polynomial with its maximal symmetry group. This …

Symplectic cohomology of compound Du Val singularities

JD Evans, Y Lekili - arXiv preprint arXiv:2104.11713, 2021 - arxiv.org
We compute symplectic cohomology for Milnor fibres of certain compound Du Val
singularities that admit small resolution by using homological mirror symmetry. Our …

Nonexistence of exact Lagrangian tori in affine conic bundles over

Y Li - arXiv preprint arXiv:2104.10050, 2021 - arxiv.org
Let $ M\subset\mathbb {C}^{n+ 1} $ be a smooth affine hypersurface defined by the equation
$ xy+ p (z_1,\cdots, z_ {n-1})= 1$, where $ p $ is a Brieskorn-Pham polynomial and $ n\geq2 …

A note on homological Berglund-H\" ubsch-Henningson mirror symmetry for curve singularities

M Habermann - arXiv preprint arXiv:2205.12947, 2022 - arxiv.org
In this note, we establish homological Berglund--H\" ubsch mirror symmetry for curve
singularities where the A-model incorporates equivariance, otherwise known as …

Floer theory for the variation operator of an isolated singularity

H Bae, CH Cho, D Choa, W Jeong - arXiv preprint arXiv:2310.17453, 2023 - arxiv.org
The variation operator in singularity theory maps relative homology cycles to compact cycles
in the Milnor fiber using the monodromy. We construct its symplectic analogue for an …

Homological mirror symmetry for nodal stacky curves

M Habermann - arXiv preprint arXiv:2101.12178, 2021 - arxiv.org
In this paper, we establish homological mirror symmetry where the A-model is a finite
quotient of the Milnor fibre of an invertible curve singularity, proving a conjecture of Lekili …