Ising machines as hardware solvers of combinatorial optimization problems

N Mohseni, PL McMahon, T Byrnes - Nature Reviews Physics, 2022 - nature.com
Ising machines are hardware solvers that aim to find the absolute or approximate ground
states of the Ising model. The Ising model is of fundamental computational interest because …

A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

What can transformers learn in-context? a case study of simple function classes

S Garg, D Tsipras, PS Liang… - Advances in Neural …, 2022 - proceedings.neurips.cc
In-context learning is the ability of a model to condition on a prompt sequence consisting of
in-context examples (input-output pairs corresponding to some task) along with a new query …

A graph placement methodology for fast chip design

A Mirhoseini, A Goldie, M Yazgan, JW Jiang… - Nature, 2021 - nature.com
Chip floorplanning is the engineering task of designing the physical layout of a computer
chip. Despite five decades of research 1, chip floorplanning has defied automation, requiring …

Graph learning: A survey

F Xia, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Difusco: Graph-based diffusion solvers for combinatorial optimization

Z Sun, Y Yang - Advances in Neural Information Processing …, 2023 - proceedings.neurips.cc
Abstract Neural network-based Combinatorial Optimization (CO) methods have shown
promising results in solving various NP-complete (NPC) problems without relying on hand …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art

M Karimi-Mamaghan, M Mohammadi, P Meyer… - European Journal of …, 2022 - Elsevier
In recent years, there has been a growing research interest in integrating machine learning
techniques into meta-heuristics for solving combinatorial optimization problems. This …

Benchmarking graph neural networks

VP Dwivedi, CK Joshi, AT Luu, T Laurent… - Journal of Machine …, 2023 - jmlr.org
In the last few years, graph neural networks (GNNs) have become the standard toolkit for
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …

Learning to dispatch for job shop scheduling via deep reinforcement learning

C Zhang, W Song, Z Cao, J Zhang… - Advances in neural …, 2020 - proceedings.neurips.cc
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling
problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad …