A review of AI teaching and learning from 2000 to 2020

DTK Ng, M Lee, RJY Tan, X Hu, JS Downie… - Education and …, 2023 - Springer
In recent years, with the popularity of AI technologies in our everyday life, researchers have
begun to discuss an emerging term “AI literacy”. However, there is a lack of review to …

Explainable ai: A review of machine learning interpretability methods

P Linardatos, V Papastefanopoulos, S Kotsiantis - Entropy, 2020 - mdpi.com
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption,
with machine learning systems demonstrating superhuman performance in a significant …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research

M Langer, D Oster, T Speith, H Hermanns, L Kästner… - Artificial Intelligence, 2021 - Elsevier
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …

Expanding explainability: Towards social transparency in ai systems

U Ehsan, QV Liao, M Muller, MO Riedl… - Proceedings of the 2021 …, 2021 - dl.acm.org
As AI-powered systems increasingly mediate consequential decision-making, their
explainability is critical for end-users to take informed and accountable actions. Explanations …

[HTML][HTML] The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and …

AF Markus, JA Kors, PR Rijnbeek - Journal of biomedical informatics, 2021 - Elsevier
Artificial intelligence (AI) has huge potential to improve the health and well-being of people,
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …

Human-centered explainable ai (xai): From algorithms to user experiences

QV Liao, KR Varshney - arXiv preprint arXiv:2110.10790, 2021 - arxiv.org
In recent years, the field of explainable AI (XAI) has produced a vast collection of algorithms,
providing a useful toolbox for researchers and practitioners to build XAI applications. With …

Explainable deep learning: A field guide for the uninitiated

G Ras, N Xie, M Van Gerven, D Doran - Journal of Artificial Intelligence …, 2022 - jair.org
Deep neural networks (DNNs) are an indispensable machine learning tool despite the
difficulty of diagnosing what aspects of a model's input drive its decisions. In countless real …

Benchmarking and survey of explanation methods for black box models

F Bodria, F Giannotti, R Guidotti, F Naretto… - Data Mining and …, 2023 - Springer
The rise of sophisticated black-box machine learning models in Artificial Intelligence
systems has prompted the need for explanation methods that reveal how these models work …

One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques

V Arya, RKE Bellamy, PY Chen, A Dhurandhar… - arXiv preprint arXiv …, 2019 - arxiv.org
As artificial intelligence and machine learning algorithms make further inroads into society,
calls are increasing from multiple stakeholders for these algorithms to explain their outputs …