An integer may be represented by a quadratic form over each ring of p-adic integers and over the reals without being represented by this quadratic form over the integers. More …
Y Harpaz, O Wittenberg - Annals of Mathematics, 2016 - JSTOR
Conjectures on the existence of zero-cycles on arbitrary smooth projective varieties over number fields were proposed by Colliot-Thélène, Sansuc, Kato and Saito in the 1980's. We …
We conjecture that the exceptional set in Manin's conjecture has an explicit geometric description. Our proposal includes the rational point contributions from any generically finite …
M Borovoi, C Demarche - Commentarii Mathematici Helvetici, 2013 - ems.press
For a homogeneous spaceX (not necessarily principal) of a connected algebraic group G (not necessarily linear) over a number field k, we prove a theorem of strong approximation …
Y Harpaz, O Wittenberg - Journal of the American Mathematical Society, 2020 - ams.org
Soit $ X $ une compactification lisse d'un espace homogène d'un groupe algébrique linéaire $ G $ sur un corps de nombres $ k $. Nous établissons la conjecture de Colliot-Thélène …
D Harari, AN Skorobogatov - Compositio Mathematica, 2002 - cambridge.org
Non-abelian Cohomology and Rational Points Page 1 Non-abelian Cohomology and Rational Points DAVID HARARI1 and ALEXEI N. SKOROBOGATOV2 1DMA, ENS, 45 rue d’Ulm, 75005 …
O Wittenberg - arXiv preprint arXiv:1604.08543, 2016 - arxiv.org
We report on progress in the qualitative study of rational points on rationally connected varieties over number fields, also examining integral points, zero-cycles, and non-rationally …
G Prasad, AS Rapinchuk - Commentarii mathematici Helvetici, 2010 - ems.press
In this paper we prove local–global principles for the existence of an embedding (E, σ)↪(A, τ) of a given global field E endowed with an involutive automorphism σ into a simple algebra …
Let k be a field of characteristic zero, and let k ̲ be an algebraic closure of k. For a geometrically integral variety X over k, we write k ̲ (X) for the function field of X ̲= X× kk ̲ …