Flood hazard mapping methods: A review

RB Mudashiru, N Sabtu, I Abustan, W Balogun - Journal of hydrology, 2021 - Elsevier
Flood hazard mapping (FHM) has undergone significant development in terms of approach
and capacity of the result to meet the target of policymakers for accurate prediction and …

Tackling environmental challenges in pollution controls using artificial intelligence: A review

Z Ye, J Yang, N Zhong, X Tu, J Jia, J Wang - Science of the Total …, 2020 - Elsevier
This review presents the developments in artificial intelligence technologies for
environmental pollution controls. A number of AI approaches, which start with the reliable …

[HTML][HTML] Flood susceptibility modelling using advanced ensemble machine learning models

ARMT Islam, S Talukdar, S Mahato, S Kundu… - Geoscience …, 2021 - Elsevier
Floods are one of nature's most destructive disasters because of the immense damage to
land, buildings, and human fatalities. It is difficult to forecast the areas that are vulnerable to …

A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods

K Khosravi, H Shahabi, BT Pham, J Adamowski… - Journal of …, 2019 - Elsevier
Floods around the world are having devastating effects on human life and property. In this
paper, three Multi-Criteria Decision-Making (MCDM) analysis techniques (VIKOR, TOPSIS …

An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines

B Choubin, E Moradi, M Golshan, J Adamowski… - Science of the Total …, 2019 - Elsevier
Floods, as a catastrophic phenomenon, have a profound impact on ecosystems and human
life. Modeling flood susceptibility in watersheds and reducing the damages caused by …

Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan

J Dou, AP Yunus, DT Bui, A Merghadi… - Science of the total …, 2019 - Elsevier
Landslides represent a part of the cascade of geological hazards in a wide range of geo-
environments. In this study, we aim to investigate and compare the performance of two state …

[HTML][HTML] Predicting flood susceptibility using LSTM neural networks

Z Fang, Y Wang, L Peng, H Hong - Journal of Hydrology, 2021 - Elsevier
Identifying floods and producing flood susceptibility maps are crucial steps for decision-
makers to prevent and manage disasters. Plenty of studies have used machine learning …

Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)

H Hong, J Liu, DT Bui, B Pradhan, TD Acharya… - Catena, 2018 - Elsevier
Landslides are a manifestation of slope instability causing different kinds of damage
affecting life and property. Therefore, high-performance-based landslide prediction models …

Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms

SS Band, S Janizadeh, S Chandra Pal, A Saha… - Remote Sensing, 2020 - mdpi.com
Flash flooding is considered one of the most dynamic natural disasters for which measures
need to be taken to minimize economic damages, adverse effects, and consequences by …

Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms

S Talukdar, B Ghose, Shahfahad, R Salam… - … Research and Risk …, 2020 - Springer
The flooding in Bangladesh during monsoon season is very common and frequently
happens. Consequently, people have been experiencing tremendous damage to properties …