Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship

A Mostafaei, R Ghiaasiaan, IT Ho, S Strayer… - Progress in Materials …, 2023 - Elsevier
Fusion-based additive manufacturing (AM) has significantly grown to fabricate Nickel-based
superalloys with design freedom across multiple length scales. Several phenomena such as …

Defects and anomalies in powder bed fusion metal additive manufacturing

A Mostafaei, C Zhao, Y He, SR Ghiaasiaan… - Current Opinion in Solid …, 2022 - Elsevier
Metal additive manufacturing is a disruptive technology that is revolutionizing the
manufacturing industry. Despite its unrivaled capability for directly fabricating metal parts …

Robust metal additive manufacturing process selection and development for aerospace components

P Gradl, DC Tinker, A Park, OR Mireles… - Journal of Materials …, 2022 - Springer
Metal additive manufacturing (AM) encapsulates the myriad of manufacturing processes
available to meet industrial needs. Determining which of these AM processes is best for a …

Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components

T Mukherjee, JW Elmer, HL Wei, TJ Lienert… - Progress in Materials …, 2023 - Elsevier
The properties and serviceability of 3D-printed metal parts depend on a variety of attributes.
These include the chemical composition, phases, morphology, spatial distributions of grain …

A comprehensive literature review on laser powder bed fusion of Inconel superalloys

GM Volpato, U Tetzlaff, MC Fredel - Additive manufacturing, 2022 - Elsevier
Inconel superalloys are one of the main classes of materials with good potential for
production using the additive manufacturing process of laser powder bed fusion (PBF-LB) …

Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion

C Wei, L Li - Virtual and Physical Prototyping, 2021 - Taylor & Francis
Multi-material additive manufacturing provides a new route for fabricating components with
tailored physical properties. Laser-based powder bed fusion (L-PBF), also known as …

[HTML][HTML] Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties

NK Adomako, N Haghdadi, S Primig - Materials & Design, 2022 - Elsevier
The adaptation of additive manufacturing (AM) for Ni-based superalloys has gained
significance in aerospace and power-generation industries due to the ability to fabricate …

Comparison of the microstructure, mechanical properties and distortion of stainless steel 316 L fabricated by micro and conventional laser powder bed fusion

J Fu, S Qu, J Ding, X Song, MW Fu - Additive Manufacturing, 2021 - Elsevier
Micro laser powder bed fusion (μLPBF) technology offers great benefits to industries as it
enables fabrication of complicated metallic components with greater accuracy and minimum …

Effect of annealing treatment on microstructure evolution and deformation behavior of 304 L stainless steel made by laser powder bed fusion

H Zhang, C Li, G Yao, Y Shi, Y Zhang - International Journal of Plasticity, 2022 - Elsevier
This paper focuses on the microstructural evolution of 304 L austenitic stainless steel (SS)
manufactured by laser powder bed fusion (LPBF) after stress-relieving annealing (650° C) …

Surface modification technologies for enhancing the tribological properties of cemented carbides: A review

X Ren, H Zou, Q Diao, C Wang, Y Wang, H Li, T Sui… - Tribology …, 2023 - Elsevier
Cemented carbide has comprehensive properties such as high hardness and good
toughness, and it is a high-quality solution for wear-resistant applications such as machining …