Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Machine-learned potentials for next-generation matter simulations

P Friederich, F Häse, J Proppe, A Aspuru-Guzik - Nature Materials, 2021 - nature.com
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …

E (n) equivariant graph neural networks

VG Satorras, E Hoogeboom… - … conference on machine …, 2021 - proceedings.mlr.press
This paper introduces a new model to learn graph neural networks equivariant to rotations,
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …

A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer

TW Ko, JA Finkler, S Goedecker, J Behler - Nature communications, 2021 - nature.com
Abstract Machine learning potentials have become an important tool for atomistic
simulations in many fields, from chemistry via molecular biology to materials science. Most of …

Machine learning interatomic potentials and long-range physics

DM Anstine, O Isayev - The Journal of Physical Chemistry A, 2023 - ACS Publications
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …

Machine learning for electronically excited states of molecules

J Westermayr, P Marquetand - Chemical Reviews, 2020 - ACS Publications
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …

Machine learning and the physical sciences

G Carleo, I Cirac, K Cranmer, L Daudet, M Schuld… - Reviews of Modern …, 2019 - APS
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Deep potentials for materials science

T Wen, L Zhang, H Wang, E Weinan… - Materials …, 2022 - iopscience.iop.org
To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic
simulations based on empirical interatomic potentials, a new class of descriptions of atomic …

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning

JS Smith, BT Nebgen, R Zubatyuk, N Lubbers… - Nature …, 2019 - nature.com
Computational modeling of chemical and biological systems at atomic resolution is a crucial
tool in the chemist's toolset. The use of computer simulations requires a balance between …