Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Artificial intelligence for multimodal data integration in oncology

J Lipkova, RJ Chen, B Chen, MY Lu, M Barbieri… - Cancer cell, 2022 - cell.com
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging
from radiology, histology, and genomics to electronic health records. Current artificial …

A visual–language foundation model for pathology image analysis using medical twitter

Z Huang, F Bianchi, M Yuksekgonul, TJ Montine… - Nature medicine, 2023 - nature.com
The lack of annotated publicly available medical images is a major barrier for computational
research and education innovations. At the same time, many de-identified images and much …

Scaling vision transformers to gigapixel images via hierarchical self-supervised learning

RJ Chen, C Chen, Y Li, TY Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Vision Transformers (ViTs) and their multi-scale and hierarchical variations have
been successful at capturing image representations but their use has been generally …

Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

A foundation model for clinical-grade computational pathology and rare cancers detection

E Vorontsov, A Bozkurt, A Casson, G Shaikovski… - Nature medicine, 2024 - nature.com
The analysis of histopathology images with artificial intelligence aims to enable clinical
decision support systems and precision medicine. The success of such applications …

From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment

K Swanson, E Wu, A Zhang, AA Alizadeh, J Zou - Cell, 2023 - cell.com
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict
patient outcomes, and inform treatment planning. Here, we review recent applications of ML …

Towards a general-purpose foundation model for computational pathology

RJ Chen, T Ding, MY Lu, DFK Williamson, G Jaume… - Nature Medicine, 2024 - nature.com
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks,
requiring the objective characterization of histopathological entities from whole-slide images …

AI in health and medicine

P Rajpurkar, E Chen, O Banerjee, EJ Topol - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the
experiences of both clinicians and patients. We discuss key findings from a 2-year weekly …

Transformer-based unsupervised contrastive learning for histopathological image classification

X Wang, S Yang, J Zhang, M Wang, J Zhang… - Medical image …, 2022 - Elsevier
A large-scale and well-annotated dataset is a key factor for the success of deep learning in
medical image analysis. However, assembling such large annotations is very challenging …