[HTML][HTML] Human-in-the-loop machine learning: a state of the art

E Mosqueira-Rey, E Hernández-Pereira… - Artificial Intelligence …, 2023 - Springer
Researchers are defining new types of interactions between humans and machine learning
algorithms generically called human-in-the-loop machine learning. Depending on who is in …

Exploration in deep reinforcement learning: A survey

P Ladosz, L Weng, M Kim, H Oh - Information Fusion, 2022 - Elsevier
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …

Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications

MS Xavier, CD Tawk, A Zolfagharian, J Pinskier… - IEEE …, 2022 - ieeexplore.ieee.org
Soft robotics is a rapidly evolving field where robots are fabricated using highly deformable
materials and usually follow a bioinspired design. Their high dexterity and safety make them …

A survey on curriculum learning

X Wang, Y Chen, W Zhu - IEEE transactions on pattern analysis …, 2021 - ieeexplore.ieee.org
Curriculum learning (CL) is a training strategy that trains a machine learning model from
easier data to harder data, which imitates the meaningful learning order in human curricula …

Curriculum learning: A survey

P Soviany, RT Ionescu, P Rota, N Sebe - International Journal of …, 2022 - Springer
Training machine learning models in a meaningful order, from the easy samples to the hard
ones, using curriculum learning can provide performance improvements over the standard …

Emergent tool use from multi-agent autocurricula

B Baker, I Kanitscheider, T Markov, Y Wu… - arXiv preprint arXiv …, 2019 - arxiv.org
Through multi-agent competition, the simple objective of hide-and-seek, and standard
reinforcement learning algorithms at scale, we find that agents create a self-supervised …

Curriculum learning for reinforcement learning domains: A framework and survey

S Narvekar, B Peng, M Leonetti, J Sinapov… - Journal of Machine …, 2020 - jmlr.org
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …

[图书][B] The alignment problem: How can machines learn human values?

B Christian - 2021 - books.google.com
'Vital reading. This is the book on artificial intelligence we need right now.'Mike Krieger,
cofounder of Instagram Artificial intelligence is rapidly dominating every aspect of our …

Evolving curricula with regret-based environment design

J Parker-Holder, M Jiang, M Dennis… - International …, 2022 - proceedings.mlr.press
Training generally-capable agents with reinforcement learning (RL) remains a significant
challenge. A promising avenue for improving the robustness of RL agents is through the use …

Jump-start reinforcement learning

I Uchendu, T Xiao, Y Lu, B Zhu, M Yan… - International …, 2023 - proceedings.mlr.press
Reinforcement learning (RL) provides a theoretical framework for continuously improving an
agent's behavior via trial and error. However, efficiently learning policies from scratch can be …