[HTML][HTML] From concept drift to model degradation: An overview on performance-aware drift detectors

F Bayram, BS Ahmed, A Kassler - Knowledge-Based Systems, 2022 - Elsevier
The dynamicity of real-world systems poses a significant challenge to deployed predictive
machine learning (ML) models. Changes in the system on which the ML model has been …

Learning under concept drift: A review

J Lu, A Liu, F Dong, F Gu, J Gama… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Concept drift describes unforeseeable changes in the underlying distribution of streaming
data overtime. Concept drift research involves the development of methodologies and …

[HTML][HTML] Concept drift detection in data stream mining: A literature review

S Agrahari, AK Singh - Journal of King Saud University-Computer and …, 2022 - Elsevier
In recent years, the availability of time series streaming information has been growing
enormously. Learning from real-time data has been receiving increasingly more attention …

SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary

A Fernández, S Garcia, F Herrera, NV Chawla - Journal of artificial …, 2018 - jair.org
The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is
considered" de facto" standard in the framework of learning from imbalanced data. This is …

Learning from class-imbalanced data: Review of methods and applications

G Haixiang, L Yijing, J Shang, G Mingyun… - Expert systems with …, 2017 - Elsevier
Rare events, especially those that could potentially negatively impact society, often require
humans' decision-making responses. Detecting rare events can be viewed as a prediction …

Ensemble learning for data stream analysis: A survey

B Krawczyk, LL Minku, J Gama, J Stefanowski… - Information …, 2017 - Elsevier
In many applications of information systems learning algorithms have to act in dynamic
environments where data are collected in the form of transient data streams. Compared to …

Credit card fraud detection: a realistic modeling and a novel learning strategy

A Dal Pozzolo, G Boracchi, O Caelen… - IEEE transactions on …, 2017 - ieeexplore.ieee.org
Detecting frauds in credit card transactions is perhaps one of the best testbeds for
computational intelligence algorithms. In fact, this problem involves a number of relevant …

A survey on ensemble learning for data stream classification

HM Gomes, JP Barddal, F Enembreck… - ACM Computing Surveys …, 2017 - dl.acm.org
Ensemble-based methods are among the most widely used techniques for data stream
classification. Their popularity is attributable to their good performance in comparison to …

Challenges to IoT-enabled predictive maintenance for industry 4.0

M Compare, P Baraldi, E Zio - IEEE Internet of Things Journal, 2019 - ieeexplore.ieee.org
The Industry 4.0 paradigm is boosting the relevance of predictive maintenance (PdM) for
manufacturing and production industries. PdM strongly relies on Internet of Things (IoT) …

Learning in nonstationary environments: A survey

G Ditzler, M Roveri, C Alippi… - IEEE Computational …, 2015 - ieeexplore.ieee.org
The prevalence of mobile phones, the internet-of-things technology, and networks of
sensors has led to an enormous and ever increasing amount of data that are now more …