A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

[HTML][HTML] A survey of GPT-3 family large language models including ChatGPT and GPT-4

KS Kalyan - Natural Language Processing Journal, 2024 - Elsevier
Large language models (LLMs) are a special class of pretrained language models (PLMs)
obtained by scaling model size, pretraining corpus and computation. LLMs, because of their …

[HTML][HTML] Deep learning in food category recognition

Y Zhang, L Deng, H Zhu, W Wang, Z Ren, Q Zhou… - Information …, 2023 - Elsevier
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …

Trustllm: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu, Q Zhang, Y Li… - arXiv preprint arXiv …, 2024 - arxiv.org
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

[HTML][HTML] Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review

SE Bibri, J Krogstie, A Kaboli, A Alahi - Environmental Science and …, 2024 - Elsevier
The recent advancements made in the realms of Artificial Intelligence (AI) and Artificial
Intelligence of Things (AIoT) have unveiled transformative prospects and opportunities to …

Knowledge editing for large language models: A survey

S Wang, Y Zhu, H Liu, Z Zheng, C Chen, J Li - ACM Computing Surveys, 2024 - dl.acm.org
Large Language Models (LLMs) have recently transformed both the academic and industrial
landscapes due to their remarkable capacity to understand, analyze, and generate texts …

Small data machine learning in materials science

P Xu, X Ji, M Li, W Lu - npj Computational Materials, 2023 - nature.com
This review discussed the dilemma of small data faced by materials machine learning. First,
we analyzed the limitations brought by small data. Then, the workflow of materials machine …

Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges

A Aldoseri, KN Al-Khalifa, AM Hamouda - Applied Sciences, 2023 - mdpi.com
The use of artificial intelligence (AI) is becoming more prevalent across industries such as
healthcare, finance, and transportation. Artificial intelligence is based on the analysis of …

[HTML][HTML] A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations

Z Zhao, L Alzubaidi, J Zhang, Y Duan, Y Gu - Expert Systems with …, 2024 - Elsevier
Deep learning has emerged as a powerful tool in various domains, revolutionising machine
learning research. However, one persistent challenge is the scarcity of labelled training …

Transfer learning for medical image classification: a literature review

HE Kim, A Cosa-Linan, N Santhanam, M Jannesari… - BMC medical …, 2022 - Springer
Background Transfer learning (TL) with convolutional neural networks aims to improve
performances on a new task by leveraging the knowledge of similar tasks learned in …