Nowhere in mathematics is the progress resulting from the advent of computers as apparent as in the additive number theory. In this part, we describe the role of computers in the …
T Goto, Y Ohno - Mathematics of Computation, 2008 - ams.org
ODD PERFECT NUMBERS HAVE A PRIME FACTOR EXCEEDING 108 1. Introduction A positive integer n is said to be perfect if σ(n)=2n, wh Page 1 MATHEMATICS OF COMPUTATION …
K Guha, S Ghosh - arXiv preprint arXiv:2106.08994, 2021 - arxiv.org
A positive integer $ n $ is called perfect if $\sigma (n)= 2n $, where $\sigma (n) $ denote the sum of divisors of $ n $. In this paper we study the ratio $\frac {\sigma (n)}{n} $. We define the …
A perfect number is a positive integer $ N $ such that the sum of all the positive divisors of $ N $ equals $2 N $, denoted by $\sigma (N)= 2N $. The question of the existence of odd …
This book presents material suitable for an undergraduate course in elementary number theory from a computational perspective. It seeks to not only introduce students to the …
K Hare - Mathematics of computation, 2007 - ams.org
Let $\sigma (n) $ denote the sum of the positive divisors of $ n $. We say that $ n $ is perfect if $\sigma (n)= 2 n $. Currently there are no known odd perfect numbers. It is known that if an …
НА Вавилов - Компьютерные инструменты в образовании, 2020 - cyberleninka.ru
Нигде в математике прогресс, связанный с возникновением компьютеров, не является столь зримым, как в аддитивной теории чисел. В этой части будет рассказано о роли …