Odd perfect numbers have at least nine distinct prime factors

P Nielsen - Mathematics of computation, 2007 - ams.org
ODD PERFECT NUMBERS HAVE AT LEAST NINE DISTINCT PRIME FACTORS 1.
Introduction A perfect number is one where σ(N) = 2N. In other Page 1 MATHEMATICS OF …

Computers As a Novel Mathematical Reality: III. Mersenne Numbers and Sums of Divisors

NA Vavilov - Doklady Mathematics, 2023 - Springer
Nowhere in mathematics is the progress resulting from the advent of computers as apparent
as in the additive number theory. In this part, we describe the role of computers in the …

Odd perfect numbers have a prime factor exceeding 10⁸

T Goto, Y Ohno - Mathematics of Computation, 2008 - ams.org
ODD PERFECT NUMBERS HAVE A PRIME FACTOR EXCEEDING 108 1. Introduction A
positive integer n is said to be perfect if σ(n)=2n, wh Page 1 MATHEMATICS OF COMPUTATION …

Measuring Abundance with Abundancy Index

K Guha, S Ghosh - arXiv preprint arXiv:2106.08994, 2021 - arxiv.org
A positive integer $ n $ is called perfect if $\sigma (n)= 2n $, where $\sigma (n) $ denote the
sum of divisors of $ n $. In this paper we study the ratio $\frac {\sigma (n)}{n} $. We define the …

Solving the odd perfect number problem: some old and new approaches

JAB Dris - arXiv preprint arXiv:1204.1450, 2012 - arxiv.org
A perfect number is a positive integer $ N $ such that the sum of all the positive divisors of $
N $ equals $2 N $, denoted by $\sigma (N)= 2N $. The question of the existence of odd …

[图书][B] An experimental introduction to number theory

B Hutz - 2018 - books.google.com
This book presents material suitable for an undergraduate course in elementary number
theory from a computational perspective. It seeks to not only introduce students to the …

[PDF][PDF] Generalized perfect numbers

A Bege, K Fogarasi - arXiv preprint arXiv:1008.0155, 2010 - arxiv.org
arXiv:1008.0155v1 [math.NT] 1 Aug 2010 Page 1 arXiv:1008.0155v1 [math.NT] 1 Aug 2010
Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 73–82 Generalized perfect numbers Antal …

New techniques for bounds on the total number of prime factors of an odd perfect number

K Hare - Mathematics of computation, 2007 - ams.org
Let $\sigma (n) $ denote the sum of the positive divisors of $ n $. We say that $ n $ is perfect
if $\sigma (n)= 2 n $. Currently there are no known odd perfect numbers. It is known that if an …

[PDF][PDF] Generalized perfect numbers connected with arithmetic functions

A Hoque, H Kalita - Mathematical Sciences Letters, 2014 - naturalspublishing.com
Generalized Perfect Numbers Connected with Arithmetic Functions Page 1 Math. Sci. Lett. 3,
No. 3, 249-253 (2014) 249 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.12785/msl/030318 …

[HTML][HTML] Компьютер как новая реальность математики. III. Числа Мерсенна и суммы делителей

НА Вавилов - Компьютерные инструменты в образовании, 2020 - cyberleninka.ru
Нигде в математике прогресс, связанный с возникновением компьютеров, не является
столь зримым, как в аддитивной теории чисел. В этой части будет рассказано о роли …