Locally o-minimal structures and structures with locally o-minimal open core

A Fornasiero - Annals of Pure and Applied Logic, 2013 - Elsevier
We study first-order expansions of ordered fields that are definably complete, and moreover
either are locally o-minimal, or have a locally o-minimal open core. We give a …

An analogue of the Baire category theorem

P Hieronymi - The Journal of Symbolic Logic, 2013 - cambridge.org
AN ANALOGUE OF THE BAIRE CATEGORY THEOREM §1. Introduction. Let K be an expansion
of an ordered field (K, <, +, •). We say Page 1 THE JOURNAL OF SYMBOLIC LOGIC: Volume …

Expansions of subfields of the real field by a discrete set

P Hieronymi - arXiv preprint arXiv:1012.3508, 2010 - arxiv.org
Let K be a subfield of the real field, D be a discrete subset of K and f: D^ n-> K be a function
such that f (D^ n) is somewhere dense. Then (K, f) defines the set of integers. We present …

A fundamental dichotomy for definably complete expansions of ordered fields

A Fornasiero, P Hieronymi - The Journal of Symbolic Logic, 2015 - cambridge.org
A FUNDAMENTAL DICHOTOMY FOR DEFINABLY COMPLETE EXPANSIONS OF ORDERED
FIELDS §1. Introduction. Let K be an expansion of an order Page 1 The Journal of Symbolic …

[PDF][PDF] D-minimal structures

A Fornasiero - arXiv preprint arXiv:2107.04293, 2021 - arxiv.org
arXiv:2107.04293v1 [math.LO] 9 Jul 2021 Page 1 arXiv:2107.04293v1 [math.LO] 9 Jul 2021
D-MINIMAL STRUCTURES VERSION 20 ANTONGIULIO FORNASIERO Abstract. We study …

A Note on Hieronymi's Theorem: Every Definably Complete Structure Is Definably Baire

A Fornasiero - Groups, Modules, and Model Theory-Surveys and …, 2017 - Springer
A Note on Hieronymi’s Theorem: Every Definably Complete Structure Is Definably Baire |
SpringerLink Skip to main content Advertisement SpringerLink Account Menu Find a journal …

Definable Continuous Induction on Ordered Abelian Groups

JS Eivazloo - arXiv preprint arXiv:1703.05493, 2017 - arxiv.org
As mathematical induction is applied to prove statements on natural numbers,{\it continuous
induction}(or,{\it real induction}) is a tool to prove some statements in real …