Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review

J Bernal, K Kushibar, DS Asfaw, S Valverde… - Artificial intelligence in …, 2019 - Elsevier
In recent years, deep convolutional neural networks (CNNs) have shown record-shattering
performance in a variety of computer vision problems, such as visual object recognition …

3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study

J Dolz, C Desrosiers, IB Ayed - NeuroImage, 2018 - Elsevier
This study investigates a 3D and fully convolutional neural network (CNN) for subcortical
brain structure segmentation in MRI. 3D CNN architectures have been generally avoided …

HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation

J Dolz, K Gopinath, J Yuan, H Lombaert… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Recently, dense connections have attracted substantial attention in computer vision
because they facilitate gradient flow and implicit deep supervision during training …

Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach

S Valverde, M Cabezas, E Roura, S González-Villà… - NeuroImage, 2017 - Elsevier
In this paper, we present a novel automated method for White Matter (WM) lesion
segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a …

[HTML][HTML] Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis

A Carass, S Roy, A Gherman, JC Reinhold, A Jesson… - Scientific reports, 2020 - nature.com
The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image
segmentation algorithms. It offers a standardized measure of segmentation accuracy which …

Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks

C Gros, B De Leener, A Badji, J Maranzano, D Eden… - Neuroimage, 2019 - Elsevier
The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS)
patients. Segmentation of the spinal cord and lesions from MRI data provides measures of …

Longitudinal multiple sclerosis lesion segmentation: resource and challenge

A Carass, S Roy, A Jog, JL Cuzzocreo, E Magrath… - NeuroImage, 2017 - Elsevier
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion
segmentation challenge providing training and test data to registered participants. The …

Random forest regression for magnetic resonance image synthesis

A Jog, A Carass, S Roy, DL Pham, JL Prince - Medical image analysis, 2017 - Elsevier
By choosing different pulse sequences and their parameters, magnetic resonance imaging
(MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield …

[HTML][HTML] Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities

N Aslam, IU Khan, A Bashamakh, FA Alghool… - Sensors, 2022 - mdpi.com
Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which
can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated …

[HTML][HTML] Structural neuroimaging as clinical predictor: A review of machine learning applications

JM Mateos-Pérez, M Dadar, M Lacalle-Aurioles… - NeuroImage: Clinical, 2018 - Elsevier
In this paper, we provide an extensive overview of machine learning techniques applied to
structural magnetic resonance imaging (MRI) data to obtain clinical classifiers. We …