Perbandingan akurasi euclidean distance, minkowski distance, dan manhattan distance pada algoritma K-Means clustering berbasis Chi-Square

M Nishom - Jurnal Informatika: Jurnal Pengembangan …, 2019 - ejournal.poltekharber.ac.id
Dalam data mining, terdapat beberapa algoritma yang sering digunakan dalam
pengelompokan data, diantaranya adalah K-Means. Namun, metode tersebut masih …

On K-means data clustering algorithm with genetic algorithm

S Kapil, M Chawla, MD Ansari - 2016 Fourth International …, 2016 - ieeexplore.ieee.org
Clustering has been used in various disciplines like software engineering, statistics, data
mining, image analysis, machine learning, Web cluster engines, and text mining in order to …

Performance evaluation of K-means clustering algorithm with various distance metrics

S Kapil, M Chawla - 2016 IEEE 1st international conference on …, 2016 - ieeexplore.ieee.org
Data Mining is the technique used to visualize and scrutinize the data and drive some useful
information from that data so that information can be used to perform any useful work. So …

Comparative analysis of inter-centroid K-Means performance using euclidean distance, canberra distance and manhattan distance

M Faisal, EM Zamzami - Journal of Physics: Conference Series, 2020 - iopscience.iop.org
Clustering is a method needed to group data or objects based on the required level between
data, K-means is one of the clustering methods used that can be used easily in its …

A method for automatic classification of gender based on text-independent handwriting

P Maken, A Gupta - Multimedia Tools and Applications, 2021 - Springer
Handwriting recognition is used for the prediction of various demographic traits such as age,
gender, nationality, etc. Out of all the applications gender prediction is mainly admired topic …

A hybrid chimp optimization algorithm and generalized normal distribution algorithm with opposition-based learning strategy for solving data clustering problems

SP Haeri Boroujeni, E Pashaei - Iran Journal of Computer Science, 2024 - Springer
This paper focuses on connectivity-based data clustering for categorizing similar and
dissimilar data into distinct groups. Although classical clustering algorithms such as K …

Filter pruning by switching to neighboring CNNs with good attributes

Y He, P Liu, L Zhu, Y Yang - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Filter pruning is effective to reduce the computational costs of neural networks. Existing
methods show that updating the previous pruned filter would enable large model capacity …

[PDF][PDF] Perbandingan Euclidean dan Manhattan Untuk Optimasi Cluster Menggunakan Davies Bouldin Index: Status Covid-19 Wilayah Riau

W Gie, D Jollyta - Prosiding Seminar Nasional Riset Information …, 2020 - academia.edu
Optimasi jumlah cluster diperlukan untuk memastikan kebijakan yang dapat diambil terkait
hasil pengelompokkan, termasuk memastikan kelompok wilayah dengan status ODP, PDP …

Comparison of distance models on K-Nearest Neighbor algorithm in stroke disease detection

I Iswanto, T Tulus, P Sihombing - Applied Technology and …, 2021 - journal2.unusa.ac.id
Stroke is a cardiovascular (CVD) disease caused by the failure of brain cells to get oxygen
supply to pose a risk of ischemic damage and result in death. This Disease can detect based …

A distributed computing model for big data anonymization in the networks

F Ashkouti, K Khamforoosh - Plos one, 2023 - journals.plos.org
Recently big data and its applications had sharp growth in various fields such as IoT,
bioinformatics, eCommerce, and social media. The huge volume of data incurred enormous …