Minimizations of positive periodic and Dirichlet eigenvalues for general indefinite Sturm-Liouville problems

J Chu, G Meng, Z Zhang - Advances in Mathematics, 2023 - Elsevier
The aim of this paper is to develop an analytical approach to obtain the sharp estimates for
the lowest positive periodic eigenvalue and all Dirichlet eigenvalues of a general Sturm …

[图书][B] Spectral and scattering theory for ordinary differential equations

C Bennewitz, R Weikard, M Brown - 2020 - Springer
The aim of this book is to give a modern presentation of the spectral and scattering theory for
Sturm–Liouville equations, including some results on inverse theory. We plan a second …

[PDF][PDF] Minimization of lowest positive periodic eigenvalue for Camassa–Holm equation with indefinite potential

J Chu, G Meng - Stud. Math, 2023 - researchgate.net
MINIMIZATION OF LOWEST POSITIVE PERIODIC EIGENVALUE FOR CAMASSA-HOLM
EQUATION WITH INDEFINITE POTENTIAL 1. Introduction It is we Page 1 MINIMIZATION OF …

The inverse spectral transform for the conservative Camassa–Holm flow with decaying initial data

J Eckhardt - Archive for Rational Mechanics and Analysis, 2017 - Springer
The Inverse Spectral Transform for the Conservative Camassa–Holm Flow with Decaying Initial
Data Page 1 Digital Object Identifier (DOI) 10.1007/s00205-016-1066-z Arch. Rational Mech …

The inverse spectral problem for indefinite strings

J Eckhardt, A Kostenko - Inventiones mathematicae, 2016 - Springer
Motivated by the study of certain nonlinear wave equations (in particular, the Camassa–
Holm equation), we introduce a new class of generalized indefinite strings associated with …

Sharp estimates of lowest positive Neumann eigenvalue for general indefinite Sturm-Liouville problems

Z Zhang, X Wang - Journal of Differential Equations, 2024 - Elsevier
Given two measures μ, ν and their total variations, we study the minimization of Neumann
eigenvalues for measure differential equation dy•= y (t) d μ (t)+ λ yd ν (t). By solving the …

[HTML][HTML] Trace formulas and continuous dependence of spectra for the periodic conservative Camassa–Holm flow

J Eckhardt, A Kostenko, N Nicolussi - Journal of Differential Equations, 2020 - Elsevier
This article is concerned with the isospectral problem− f ″+ 1 4 f= z ω f+ z 2 υ f for the
periodic conservative Camassa–Holm flow, where ω is a periodic real distribution in H loc …

[PDF][PDF] The Camassa--Holm Equation and The String Density Problem

J Eckhardt, A Kostenko, G Teschl - arXiv preprint arXiv:1701.03598, 2017 - arxiv.org
The Camassa–Holm Equation and The String Density Problem Page 1 arXiv:1701.03598v1
[math-ph] 13 Jan 2017 Internat. Math. Nachrichten Nr. 233 (2016), 1–24 The Camassa–Holm …

The inverse spectral problem for periodic conservative multi-peakon solutions of the Camassa–Holm equation

J Eckhardt, A Kostenko - International Mathematics Research …, 2020 - ieeexplore.ieee.org
The Inverse Spectral Problem for Periodic Conservative Multi-peakon Solutions of the
Camassa–Holm Equation Page 1 J. Eckhardt and A. Kostenko (2020) “The Inverse Spectral …

Spectral asymptotics for canonical systems

J Eckhardt, A Kostenko, G Teschl - Journal für die reine und …, 2018 - degruyter.com
Based on continuity properties of the de Branges correspondence, we develop a new
approach to study the high-energy behavior of Weyl–Titchmarsh and spectral functions of 2× …