C Negron - Communications in Mathematical Physics, 2021 - Springer
We construct log-modular quantum groups at even order roots of unity, both as finite- dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor categories, via a de …
P Etingof, V Ostrik - Journal für die reine und angewandte …, 2021 - degruyter.com
We develop a theory of Frobenius functors for symmetric tensor categories (STC) 𝒞 over a field 𝒌 of characteristic p, and give its applications to classification of such categories …
Several complications arise when attempting to work with fusion categories over arbitrary fields. Here we describe some of the new phenomena that occur when the field is not …
A Schopieray - Topological phases of matter and quantum …, 2020 - books.google.com
Andrew Schopieray A diverse collection of fusion categories, in the language of [22], may be realized by the representation theory of quantum groups. There is substantial literature …
C Negron - arXiv preprint arXiv:2306.14453, 2023 - arxiv.org
We consider quantum group representations for a semisimple algebraic group G at a complex root of unity q. Here q is allowed to be of any order. We revisit some fundamental …
We study the semiclassical limit κ→∞ of the generalized quantum Langlands kernel associated to a Lie algebra g and an integer level p. This vertex algebra acquires a big …
A modular tensor category is a non-degenerate ribbon finite tensor category and a ribbon factorizable Hopf algebra is a Hopf algebra whose finite-dimensional representations form a …
C Negron - arXiv preprint arXiv:2311.13797, 2023 - arxiv.org
We consider quantum group representations Rep (G_q) for a semisimple algebraic group G at a complex root of unity q. Here we allow q to be of any order. We first show that the …
We investigate the splitting property of quasitriangular Hopf algebras through the lens of twisted tensor products. Specifically, we demonstrate that an infinite-dimensional …