Deep multimodal learning: A survey on recent advances and trends

D Ramachandram, GW Taylor - IEEE signal processing …, 2017 - ieeexplore.ieee.org
The success of deep learning has been a catalyst to solving increasingly complex machine-
learning problems, which often involve multiple data modalities. We review recent advances …

[PDF][PDF] Implementation with performance evaluation of decision tree classifier for uncertain data: Literature review

AAA Saed, AA Jaharadak - International Journal of Multidisciplinary …, 2022 - academia.edu
To extract meaningful and non-negligible facts from large amounts of data for the extraction
of patterns, anomalies, and correspondence information from large databases, data mining …

Bayesian optimization on graph-structured search spaces: Optimizing deep multimodal fusion architectures

D Ramachandram, M Lisicki, TJ Shields, MR Amer… - Neurocomputing, 2018 - Elsevier
A popular testbed for deep learning has been multimodal recognition of human activity or
gesture involving diverse inputs like video, audio, skeletal pose and depth images. Deep …

Predictive modeling for student retention at St. Cloud state university

H Dissanayake, D Robinson… - Proceedings of the …, 2016 - search.proquest.com
Student graduation rates have always taken prominence in academic studies since they are
considered a major factor in the performance of any university. Accurate models for …

SCAD: Subspace Clustering based Adversarial Detector

X Hu, W Chen, J Yang, Y Guo, X Yao, B Wang… - Proceedings of the 17th …, 2024 - dl.acm.org
Adversarial examples pose significant challenges for Natural Language Processing (NLP)
model robustness, often causing notable performance degradation. While various detection …

An evolutionary approach to compact dag neural network optimization

C Chiu, J Zhan - Ieee Access, 2019 - ieeexplore.ieee.org
Neural networks are the cutting edge of artificial intelligence, demonstrated to reliably
outperform other techniques in machine learning. Within the domain of neural networks …

Sparsity enhanced MRF algorithm for automatic object detection in GPR imagery.

C Meng, J Yang - Mathematical Biosciences and Engineering: MBE, 2023 - europepmc.org
This study addressed the problem of automated object detection from ground penetrating
radar imaging (GPR), using the concept of sparse representation. The detection task is first …

A Novel Cuckoo Search Structure Optimized Neural Network for Efficient Data Aggregation in Wireless Sensor Network

KVK Stephen, V Mathivanan… - 2020 4th International …, 2020 - ieeexplore.ieee.org
Mobile Wireless Sensor Network (WSN) can be used to solve various issues confronted by
static WSN. A mobile sink adheres to diverse mobility patterns in the region of sensors such …

Predicción de reacciones adversas en las transfusiones sanguíneas del paciente receptor basado en redes neuronales

LD Chunga Huaylinos - 2021 - repositorio.ulima.edu.pe
La transfusión de sangre es un tratamiento terapéutico que salva vidas, para ello es
necesario proporcionar sangre segura a los pacientes. La hemovigilancia es el proceso que …

СТОХАСТИЧНА ПСЕВДОСПІНОВА НЕЙРОННА МЕРЕЖА З ТРИДІАГОНАЛЬНИМИ СИНАПТИЧНИМИ ЗВ'ЯЗКАМИ

RМ Peleshchak, VV Lytvyn, ОІ Cherniak… - Radio Electronics …, 2021 - ric.zntu.edu.ua
АНОТАЦІЯ Актуальність. Для скорочення часу обчислювального ресурсу в задачах
діагностування та розпізнавання спотворених образів на основі повнозв'язної …