Comprehensive evaluation of deep and graph learning on drug–drug interactions prediction

X Lin, L Dai, Y Zhou, ZG Yu, W Zhang… - Briefings in …, 2023 - academic.oup.com
Recent advances and achievements of artificial intelligence (AI) as well as deep and graph
learning models have established their usefulness in biomedical applications, especially in …

[HTML][HTML] Artificial intelligence in pharmaceutical sciences

M Lu, J Yin, Q Zhu, G Lin, M Mou, F Liu, Z Pan, N You… - Engineering, 2023 - Elsevier
Drug discovery and development affects various aspects of human health and dramatically
impacts the pharmaceutical market. However, investments in a new drug often go …

Building a knowledge graph to enable precision medicine

P Chandak, K Huang, M Zitnik - Scientific Data, 2023 - nature.com
Developing personalized diagnostic strategies and targeted treatments requires a deep
understanding of disease biology and the ability to dissect the relationship between …

A unified drug–target interaction prediction framework based on knowledge graph and recommendation system

Q Ye, CY Hsieh, Z Yang, Y Kang, J Chen, D Cao… - Nature …, 2021 - nature.com
Prediction of drug-target interactions (DTI) plays a vital role in drug development in various
areas, such as virtual screening, drug repurposing and identification of potential drug side …

DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations

J Wang, X Liu, S Shen, L Deng… - Briefings in …, 2022 - academic.oup.com
Motivation Drug combination therapy has become an increasingly promising method in the
treatment of cancer. However, the number of possible drug combinations is so huge that it is …

KG-Predict: A knowledge graph computational framework for drug repurposing

Z Gao, P Ding, R Xu - Journal of biomedical informatics, 2022 - Elsevier
The emergence of large-scale phenotypic, genetic, and other multi-model biochemical data
has offered unprecedented opportunities for drug discovery including drug repurposing …

Medical knowledge graph: Data sources, construction, reasoning, and applications

X Wu, J Duan, Y Pan, M Li - Big Data Mining and Analytics, 2023 - ieeexplore.ieee.org
Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have
been in use in a variety of intelligent medical applications. Thus, understanding the research …

A review of biomedical datasets relating to drug discovery: a knowledge graph perspective

S Bonner, IP Barrett, C Ye, R Swiers… - Briefings in …, 2022 - academic.oup.com
Drug discovery and development is a complex and costly process. Machine learning
approaches are being investigated to help improve the effectiveness and speed of multiple …

Application of Artificial Intelligence in Drug–Drug Interactions Prediction: A Review

Y Zhang, Z Deng, X Xu, Y Feng… - Journal of chemical …, 2023 - ACS Publications
Drug–drug interactions (DDI) are a critical aspect of drug research that can have adverse
effects on patients and can lead to serious consequences. Predicting these events …

Poisoning medical knowledge using large language models

J Yang, H Xu, S Mirzoyan, T Chen, Z Liu, Z Liu… - Nature Machine …, 2024 - nature.com
Biomedical knowledge graphs (KGs) constructed from medical literature have been widely
used to validate biomedical discoveries and generate new hypotheses. Recently, large …