A survey on video diffusion models

Z Xing, Q Feng, H Chen, Q Dai, H Hu, H Xu… - ACM Computing …, 2024 - dl.acm.org
The recent wave of AI-generated content (AIGC) has witnessed substantial success in
computer vision, with the diffusion model playing a crucial role in this achievement. Due to …

A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network

X Chen, H Shao, Y Xiao, S Yan, B Cai, B Liu - Mechanical Systems and …, 2023 - Elsevier
Most of the existing research on unsupervised cross-domain intelligent fault diagnosis is
based on single-source domain adaptation, which fails to simultaneously utilize various …

A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Generative adversarial networks in time series: A systematic literature review

E Brophy, Z Wang, Q She, T Ward - ACM Computing Surveys, 2023 - dl.acm.org
Generative adversarial network (GAN) studies have grown exponentially in the past few
years. Their impact has been seen mainly in the computer vision field with realistic image …

Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice

E Zio - Reliability Engineering & System Safety, 2022 - Elsevier
We are performing the digital transition of industry, living the 4th industrial revolution,
building a new World in which the digital, physical and human dimensions are interrelated in …

Mapping single-cell data to reference atlases by transfer learning

M Lotfollahi, M Naghipourfar, MD Luecken… - Nature …, 2022 - nature.com
Large single-cell atlases are now routinely generated to serve as references for analysis of
smaller-scale studies. Yet learning from reference data is complicated by batch effects …

Is out-of-distribution detection learnable?

Z Fang, Y Li, J Lu, J Dong, B Han… - Advances in Neural …, 2022 - proceedings.neurips.cc
Supervised learning aims to train a classifier under the assumption that training and test
data are from the same distribution. To ease the above assumption, researchers have …

On neural differential equations

P Kidger - arXiv preprint arXiv:2202.02435, 2022 - arxiv.org
The conjoining of dynamical systems and deep learning has become a topic of great
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …

Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T Xiang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …