Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes

X Fan, C Zhong, J Liu, J Ding, Y Deng, X Han… - Chemical …, 2022 - ACS Publications
The ever-increasing demand for flexible and portable electronics has stimulated research
and development in building advanced electrochemical energy devices which are …

Organosulfur materials for rechargeable batteries: Structure, mechanism, and application

P Sang, Q Chen, DY Wang, W Guo, Y Fu - Chemical Reviews, 2023 - ACS Publications
Lithium-ion batteries have received significant attention over the last decades due to the
wide application of portable electronics and increasing deployment of electric vehicles. In …

Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

Multifunctional electrolyte additives for better metal batteries

Y Zhu, M Ge, F Ma, Q Wang… - Advanced Functional …, 2024 - Wiley Online Library
The high energy density of rechargeable metal (Li, Na, and Zn) batteries has garnered a lot
of interest. However, the poor cycle stability and low Coulomb efficiency (CE), which are …

A perspective toward practical lithium–sulfur batteries

M Zhao, BQ Li, XQ Zhang, JQ Huang… - ACS Central …, 2020 - ACS Publications
Lithium–sulfur (Li–S) batteries have long been expected to be a promising high-energy-
density secondary battery system since their first prototype in the 1960s. During the past …

Fundamental, application and opportunities of single atom catalysts for Li-S batteries

T Zhou, J Liang, S Ye, Q Zhang, J Liu - Energy Storage Materials, 2023 - Elsevier
Li-S batteries are regarded as promising energy storage devices for future electric vehicles
(EVs) due to the advantages of high energy density and low cost. However, their practical …

Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery

W Guo, W Zhang, Y Si, D Wang, Y Fu… - Nature …, 2021 - nature.com
The interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in
lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a …

Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives

H Zhang, GG Eshetu, X Judez, C Li… - Angewandte Chemie …, 2018 - Wiley Online Library
Lithium metal (Li0) rechargeable batteries (LMBs), such as systems with a Li0 anode and
intercalation and/or conversion type cathode, lithium‐sulfur (Li‐S), and lithium‐oxygen …

Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes

X Shen, H Liu, XB Cheng, C Yan, JQ Huang - Energy Storage Materials, 2018 - Elsevier
Environmental pollution and energy shortage lead to a continuous demand for battery
energy storage systems with a higher energy density. Due to its lowest mass-density among …

A review on lithium-sulfur batteries: Challenge, development, and perspective

Q Shao, S Zhu, J Chen - Nano Research, 2023 - Springer
Abstract Lithium-sulfur (Li-S) battery is recognized as one of the promising candidates to
break through the specific energy limitations of commercial lithium-ion batteries given the …