Null ideals of subsets of matrix rings over fields

NJ Werner - Linear Algebra and its Applications, 2022 - Elsevier
Let M n (F) denote the ring of n× n matrices with entries from a field F. For a subset S⊆ M n
(F), the null ideal N (S) of S is the set of all polynomials f with coefficients in M n (F) such that …

Counting core sets in matrix rings over finite fields

R Rissner, NJ Werner - arXiv preprint arXiv:2405.04106, 2024 - arxiv.org
Let $ R $ be a commutative ring and $ M_n (R) $ be the ring of $ n\times n $ matrices with
entries from $ R $. For each $ S\subseteq M_n (R) $, we consider its (generalized) null ideal …

Integer-valued polynomials on subsets of quaternion algebras

NJ Werner - arXiv preprint arXiv:2412.20609, 2024 - arxiv.org
Let $ R $ be either the ring of Lipschitz quaternions, or the ring of Hurwitz quaternions. Then,
$ R $ is a subring of the division ring $\mathbb {D} $ of rational quaternions. For …

Integer-valued polynomials on subsets of upper triangular matrix rings

AR Naghipour, J Sedighi Hafshejani - Communications in Algebra, 2024 - Taylor & Francis
S. Frisch, showed that the integer-valued polynomials on upper triangular matrix ring Int T n
(K)(T n (D)):={f∈ T n (K)[x]| f (T n (D))⊆ T n (D)} is a ring, where D is an integral domain with …

Some results on integer-valued polynomials over modules

AR Naghipour, JS Hafshejani - Bulletin of the Korean Mathematical …, 2020 - koreascience.kr
Let M be a module over a commutative ring R. In this paper, we study Int (R, M), the module
of integer-valued polynomials on M over R, and Int M (R), the ring of integer-valued …

[PDF][PDF] Integer-valued polynomials over the upper triangular matrix rings

AR Naghipour, JS Hafshejani - The 4th Seminar on Algebra and its …, 2023 - imsc.uni-graz.at