Deep learning techniques for medical image segmentation: achievements and challenges

MH Hesamian, W Jia, X He, P Kennedy - Journal of digital imaging, 2019 - Springer
Deep learning-based image segmentation is by now firmly established as a robust tool in
image segmentation. It has been widely used to separate homogeneous areas as the first …

Deep learning in medical imaging and radiation therapy

B Sahiner, A Pezeshk, LM Hadjiiski, X Wang… - Medical …, 2019 - Wiley Online Library
The goals of this review paper on deep learning (DL) in medical imaging and radiation
therapy are to (a) summarize what has been achieved to date;(b) identify common and …

Abdomenct-1k: Is abdominal organ segmentation a solved problem?

J Ma, Y Zhang, S Gu, C Zhu, C Ge… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
With the unprecedented developments in deep learning, automatic segmentation of main
abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have …

A review of deep learning based methods for medical image multi-organ segmentation

Y Fu, Y Lei, T Wang, WJ Curran, T Liu, X Yang - Physica Medica, 2021 - Elsevier
Deep learning has revolutionized image processing and achieved the-state-of-art
performance in many medical image segmentation tasks. Many deep learning-based …

Convolutional neural networks for radiologic images: a radiologist's guide

S Soffer, A Ben-Cohen, O Shimon, MM Amitai… - Radiology, 2019 - pubs.rsna.org
Deep learning has rapidly advanced in various fields within the past few years and has
recently gained particular attention in the radiology community. This article provides an …

A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Automatic multi-organ segmentation on abdominal CT with dense V-networks

E Gibson, F Giganti, Y Hu, E Bonmati… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Automatic segmentation of abdominal anatomy on computed tomography (CT) images can
support diagnosis, treatment planning, and treatment delivery workflows. Segmentation …

Combo loss: Handling input and output imbalance in multi-organ segmentation

SA Taghanaki, Y Zheng, SK Zhou, B Georgescu… - … Medical Imaging and …, 2019 - Elsevier
Simultaneous segmentation of multiple organs from different medical imaging modalities is a
crucial task as it can be utilized for computer-aided diagnosis, computer-assisted surgery …

Advances in auto-segmentation

CE Cardenas, J Yang, BM Anderson, LE Court… - Seminars in radiation …, 2019 - Elsevier
Manual image segmentation is a time-consuming task routinely performed in radiotherapy to
identify each patient's targets and anatomical structures. The efficacy and safety of the …

Survey on deep learning for radiotherapy

P Meyer, V Noblet, C Mazzara, A Lallement - Computers in biology and …, 2018 - Elsevier
More than 50% of cancer patients are treated with radiotherapy, either exclusively or in
combination with other methods. The planning and delivery of radiotherapy treatment is a …