Submanifold theory has emerged as a natural development of the classical study of curves and surfaces in Euclidean three space with the methods of differential calculus. In the last …
We consider proposals for the cost of holographic path integrals. Gravitational path integrals within finite radial cutoff surfaces have a precise map to path integrals in $ T\overline {T} …
M Gromov - Bulletin of the American Mathematical Society, 2017 - ams.org
Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems Page 1 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54 …
É Ghys - L'Enseignement Mathématique, 2011 - ems.press
Le 28 août 1878,a l'occasion de la septieme réuniona Paris de l'Association pour l'Avancement de la Science, PL Tchebychev fit une conférence portant le même titre que cet …
The aim of this book is to reveal the potential of Lobachevsky's geometry in the context of its emergence in various branches of current interest in contemporary science, first and …
MT Anderson - Selecta Mathematica, 2010 - Springer
We investigate the validity of the isometry extension property for (Riemannian) Einstein metrics on compact manifolds M with boundary∂ M. Given a metric γ on∂ M, this is the …
JA Gálvez, P Mira - Mathematische Zeitschrift, 2010 - Springer
We produce a new general family of flat tori in\mathbb R^ 4, the first one since Bianchi's classical works in the nineteenth century. To construct these flat tori, obtained via small …
D Khadjiev - Journal of Nonlinear Mathematical Physics, 2010 - World Scientific
Let be the n-dimensional pseudo-Euclidean space of index p and M (n, p) the group of all transformations of generated by pseudo-orthogonal transformations and parallel …
AA Borisenko - Журнал математической физики, анализа …, 2019 - mathnet.ru
The structure of surfaces of revolution with constant Gaussian curvature in the Euclidean space E3 is well known. From the fact that the induced metric is a metric of revolution it does …