SM Mirafzal - Bulletin of the Malaysian Mathematical Sciences …, 2021 - Springer
Abstract Let n> 3 n> 3 and 0< k< n 2 0< k< n 2 be integers. In this paper, we investigate some algebraic properties of the line graph of the graph Q_n (k, k+ 1) Q n (k, k+ 1) where …
Let $ n $ and $ k $ be integers with $ n> k\geq1 $ and $[n]=\{1, 2,..., n\} $. The $ bipartite\Kneser\graph $$ H (n, k) $ is the graph with the all $ k $-element and all ($ nk $) …
SM Mirafzal - Communications in Combinatorics and …, 2024 - comb-opt.azaruniv.ac.ir
Let $ G=(V, E) $ be a connected graph with the vertex-set $ V $ and the edge-set $ E $. The subdivision graph $ S (G) $ of the graph $ G $ is obtained from $ G $ by adding a vertex in …
SM Mirafzal, M Ziaee - arXiv preprint arXiv:1901.07784, 2019 - arxiv.org
Let $\Omega $ be a $ m $-set, where $ m> 1$, is an integer. The Hamming graph $ H (n, m) $, has $\Omega^{n} $ as its vertex-set, with two vertices are adjacent if and only if they differ …
SM Mirafzal - arXiv preprint arXiv:2105.07594, 2021 - arxiv.org
Let $ k\geq 1$ be an integer and $ n= 3k-1$. Let $\mathbb {Z} _n $ denote the additive group of integers modulo $ n $ and let $ C $ be the subset of $\mathbb {Z} _n $ consisting of …
A Das, SM Mirafzal - arXiv preprint arXiv:2403.01293, 2024 - arxiv.org
Let $ G_n=\mathbb {Z} _n\times\mathbb {Z} _n $ for $ n\geq 4$ and $ S=\{(i, 0),(0, i),(i, i): 1\leq i\leq n-1\}\subset G_n $. Define $\Gamma (n) $ to be the Cayley graph of $ G_n $ with …
SM Mirafzal - arXiv preprint arXiv:2101.01615, 2021 - arxiv.org
Let $\Gamma=(V, E) $ be a graph. The square graph $\Gamma^ 2$ of the graph $\Gamma $ is the graph with the vertex set $ V (\Gamma^ 2)= V $ in which two vertices are adjacent if …
SM Mirafzal - arXiv preprint arXiv:1910.12563, 2019 - arxiv.org
Let $ G $ be a finite abelian group written additively with identity $0 $, and $\Omega $ be an inverse closed generating subset of $ G $ such that $0\notin\Omega $. We say that $\Omega …
SM Mirafzal, A Das - Transactions on Combinatorics, 2025 - toc.ui.ac.ir
Let $ G_n=\mathbb {Z} _n\times\mathbb {Z} _n $ for $ n\geq 4$ and $ S=\{(i, 0),(0, i),(i, i): 1\leq i\leq n-1\}\subset G_n $. Define $\Gamma (n) $ to be the Cayley graph of $ G_n $ with …