[图书][B] Degenerate complex Monge–Ampère equations

V Guedj, A Zeriahi - 2017 - ems.press
The study of complex Monge–Ampere equations on compact Kähler manifolds is an
important part of the interface between complex analysis and differential geometry …

A variational approach to complex Monge-Ampere equations

RJ Berman, S Boucksom, V Guedj… - … mathématiques de l'IHÉS, 2013 - numdam.org
We show that degenerate complex Monge-Ampère equations in a big cohomology class of a
compact Kähler manifold can be solved using a variational method, without relying on Yau's …

Tian's properness conjectures and Finsler geometry of the space of Kähler metrics

T Darvas, Y Rubinstein - Journal of the American Mathematical Society, 2017 - ams.org
Well-known conjectures of Tian predict that the existence of canonical Kähler metrics should
be equivalent to various notions of properness of Mabuchi's K-energy functional. First, we …

Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties

RJ Berman, S Boucksom, P Eyssidieux… - Journal für die reine …, 2019 - degruyter.com
We prove the existence and uniqueness of Kähler–Einstein metrics on ℚ-Fano varieties with
log terminal singularities (and more generally on log Fano pairs) whose Mabuchi functional …

[HTML][HTML] The Mabuchi geometry of finite energy classes

T Darvas - Advances in Mathematics, 2015 - Elsevier
We introduce different Finsler metrics on the space of smooth Kähler potentials that will
induce a natural geometry on various finite energy classes E χ˜(X, ω). Motivated by …

Open problems in pluripotential theory

S Dinew, V Guedj, A Zeriahi - Complex Variables and Elliptic …, 2016 - Taylor & Francis
Full article: Open problems in pluripotential theory Skip to Main Content Taylor and Francis
Online homepage Taylor and Francis Online homepage Log in | Register Cart 1.Home 2.All …

Growth of balls of holomorphic sections and energy at equilibrium

R Berman, S Boucksom - Inventiones mathematicae, 2010 - Springer
Let L be a big line bundle on a compact complex manifold X. Given a non-pluripolar
compact subset K of X and a continuous Hermitian metric e− φ on L, we define the energy at …

The metric geometry of singularity types

T Darvas, E Di Nezza, HC Lu - Journal für die reine und angewandte …, 2021 - degruyter.com
Let X be a compact Kähler manifold. Given a big cohomology class {θ}, there is a natural
equivalence relation on the space of θ-psh functions giving rise to 𝒮⁢(X, θ), the space of …

Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity

T Darvas, E Di Nezza, CH Lu - Analysis & PDE, 2018 - msp.org
We establish the monotonicity property for the mass of nonpluripolar products on compact
Kähler manifolds, and we initiate the study of complex Monge–Ampère-type equations with …

Convexity of the extended K-energy and the large time behavior of the weak Calabi flow

R Berman, T Darvas, C Lu - Geometry & Topology, 2017 - msp.org
Let (X, ω) be a compact connected Kähler manifold and denote by (ℰ p, dp) the metric
completion of the space of Kähler potentials ℋ ω with respect to the L p–type path length …