[HTML][HTML] A hybrid framework for short term load forecasting with a navel feature engineering and adaptive grasshopper optimization in smart grid

M Zulfiqar, M Kamran, MB Rasheed, T Alquthami… - Applied Energy, 2023 - Elsevier
Short-term load forecasting (STLF) enables distribution system operators to perform efficient
energy management by flexibly engaging energy consumers under the intelligent demand …

Short term electric load forecasting using hybrid algorithm for smart cities

EE Elattar, NA Sabiha, M Alsharef, MK Metwaly… - Applied …, 2020 - Springer
Many day-to-day operation decisions in a smart city need short term load forecasting (STLF)
of its customers. STLF is a challenging task because the forecasting accuracy is affected by …

A machine learning model for the prediction of unhealthy alcohol use among women of childbearing age in Alabama

KA Johnson, JT McDaniel, J Okine… - Alcohol and …, 2024 - academic.oup.com
Introduction: This study utilizes a machine learning model to predict unhealthy alcohol use
treatment levels among women of childbearing age. Methods: In this cross-sectional study …

[PDF][PDF] A novel data mining approach for defect detection in the printed circuit board manufacturing process

B Bártová, V Bína - Engineering Management in Production and …, 2022 - sciendo.com
This research aims to propose an effective model for the detection of defective Printed
Circuit Boards (PCBs) in the output stage of the Surface-Mount Technology (SMT) line. The …

[HTML][HTML] Efficient Data-Mining Algorithm for Predicting Heart Disease Based on an Angiographic Test

AW Banjoko, KO Abdulazeez - The Malaysian journal of medical …, 2021 - ncbi.nlm.nih.gov
Background The computerised classification and prediction of heart disease can be useful
for medical personnel for the purpose of fast diagnosis with accurate results. This study …

Web page recommendation system using bat optimization and weighted support vector machine algorithm for health care service

S Anusuya, NM Mallika - International Journal of Health Sciences, 2022 - neliti.com
Web-page recommendation commands a predominant part in smartweb systems.  
Discovery of meaningfulinformation from web utilization data and improvedrepresentation of …

Data Mining Genome-Based Algorithm for Optimal Gene Selection and Prediction of Colorectal Carcinoma.

AW Banjoko - Turkiye Klinikleri Journal of Biostatistics, 2020 - search.ebscohost.com
Objective: This study presents a method for optimal selection of gene subsets to enhance
the non-clinical diagnostic classification and prediction of colorectal cancer using gene …

A Non-Parametric Approach to Weighted Support Vector Machine Method for Efficient Classification

ST Akinsuyi - 2023 - search.proquest.com
In this era of big data, high-dimensional data analysis has emerged as a critical area of
research with applications ranging from genomics to finance and machine learning. Outliers …

[PDF][PDF] Data Mining Genome Selection and Prediction of Color

AW BANJOKO - researchgate.net
Objective: This study presents a method fo selection of gene subsets to enhance the non
classification and prediction of colorectal cancer using gen sion level of gene expression …

Использование бисериальных коэффициентов корреляции в методах анализа данных

ВЮ Кириченко - … в социально-экономических и технических системах, 2023 - elibrary.ru
Работа посвящена анализу кейсов использования бисериальных коэффициентов в
различных исследовательских областях для оценки мер связей в данных. В данной …