Let (M, g) be a smooth, compact Riemannian manifold, and let {ϕ h} be an L 2-normalized sequence of Laplace eigenfunctions,− h 2 Δ g ϕ h= ϕ h. Given a smooth submanifold H⊂ M …
This work concerns $ L^ p $ norms of high energy Laplace eigenfunctions, $(-\Delta_g- \lambda^ 2)\phi_\lambda= 0$, $\|\phi_\lambda\| _ {L^ 2}= 1$. In 1988, Sogge gave optimal …
Let uh be a sequence of L 2-normalized semiclassical Schrödinger eigenfunctions associated to a defect measure μ. Many recent work (Sogge, 2011; Sogge and Zelditch …
Let {ej} be an orthonormal basis of Laplace eigenfunctions of a compact Riemannian manifold (M, g). Let H⊂ M be a submanifold and {ψ k} be an orthonormal basis of Laplace …
Y Canzani, J Galkowski - Journal of Differential Geometry, 2023 - projecteuclid.org
Let $(M, g) $ be a smooth, compact Riemannian manifold and ${\lbrace\phi\lambda\rbrace} $ an $ L^ 2$-normalized sequence of Laplace eigenfunctions, $-\Delta_g\phi_\lambda …
EL Wyman - The Journal of Geometric Analysis, 2020 - Springer
Let (M, g) be a compact Riemannian surface with nonpositive sectional curvature and let γ γ be a closed geodesic in M. And let e_ λ e λ be an L^ 2 L 2-normalized eigenfunction of the …
This book aims to explain the concepts behind the geodesic beam method that we have developed to study the behavior of high energy eigenfunctions. The idea for geodesic …
Geodesic biangles and Fourier coefficients of restrictions of eigenfunctions Page 1 PURE and APPLIED ANALYSIS msp EMMETT L. WYMAN, YAKUN XI AND STEVE ZELDITCH GEODESIC …
X Huang, X Wang, C Zhang - arXiv preprint arXiv:2408.01947, 2024 - arxiv.org
Burq-G\'erard-Tzvetkov and Hu established $ L^ p $ estimates for the restriction of Laplace- Beltrami eigenfunctions to submanifolds. We investigate the eigenfunctions of the Schr\" …