Stochastic homogenization of nonconvex Hamilton-Jacobi equations: a counterexample

B Ziliotto - arXiv preprint arXiv:1512.06375, 2015 - arxiv.org
arXiv:1512.06375v2 [math.AP] 7 Sep 2016 Page 1 arXiv:1512.06375v2 [math.AP] 7 Sep 2016
Stochastic homogenization of nonconvex Hamilton-Jacobi equations: a counterexample Bruno …

Homogenization and non-homogenization of certain non-convex Hamilton–Jacobi equations

WM Feldman, PE Souganidis - Journal de Mathématiques Pures et …, 2017 - Elsevier
We continue the study of the homogenization of coercive non-convex Hamilton–Jacobi
equations in random media identifying two general classes of Hamiltonians with very distinct …

Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems

J Fischer, S Neukamm - Archive for Rational Mechanics and Analysis, 2021 - Springer
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with
monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone …

Ratio convergence rates for Euclidean first-passage percolation: applications to the graph infinity Laplacian

L Bungert, J Calder, T Roith - The Annals of Applied Probability, 2024 - projecteuclid.org
Ratio convergence rates for Euclidean first-passage percolation: Applications to the graph
infinity Laplacian Page 1 The Annals of Applied Probability 2024, Vol. 34, No. 4, 3870–3910 …

The limit shape of convex hull peeling

J Calder, CK Smart - 2020 - projecteuclid.org
We prove that the convex peeling of a random point set in dimension d approximates motion
by the 1/(d+ 1) power of Gaussian curvature. We use viscosity solution theory to interpret the …

Random homogenization of coercive Hamilton–Jacobi equations in 1d

H Gao - Calculus of variations and partial differential equations, 2016 - Springer
In this paper, we prove the random homogenization of general coercive non-convex
Hamilton–Jacobi equations in the one dimensional case. This extends the result of …

Lyapunov stability and uniqueness problems for Hamilton-Jacobi equations without monotonicity

Y Ruan, K Wang, J Yan - arXiv preprint arXiv:2501.08556, 2025 - arxiv.org
We consider the evolutionary Hamilton-Jacobi equation\begin {align*} w_t (x, t)+ H (x, Dw (x,
t), w (x, t))= 0,\quad (x, t)\in M\times [0,+\infty),\end {align*} where $ M $ is a compact …

Min–max formulas and other properties of certain classes of nonconvex effective Hamiltonians

J Qian, HV Tran, Y Yu - Mathematische Annalen, 2018 - Springer
This paper is the first attempt to systematically study properties of the effective Hamiltonian
HH¯ arising in the periodic homogenization of some coercive but nonconvex Hamilton …

Optimal control of diffusion processes with terminal constraint in law

S Daudin - Journal of Optimization Theory and Applications, 2022 - Springer
Stochastic optimal control problems with constraints on the probability distribution of the final
output are considered. Necessary conditions for optimality in the form of a coupled system of …

Existence of an Effective Burning Velocity in a Cellular Flow for the Curvature G-Equation Proved Using a Game Analysis

H Gao, Z Long, J Xin, Y Yu - The Journal of Geometric Analysis, 2024 - Springer
G-equation is a popular level set model in turbulent combustion, and becomes an advective
mean curvature type evolution equation when curvature of a moving flame in a fluid flow is …