L'arithmétique des corps de fonctions est apparue au XIXe siècle en parallèle de la théorie des nombres dite classique. Sa naissance et son développement se fondent sur de …
A Pal - International Journal of Number Theory, 2014 - World Scientific
In this paper we apply methods from the number field case of Perrin-Riou [20] and Zábrádi [32] in the function field setup. In ℤℓ-and GL2-cases (ℓ≠ p), we prove algebraic functional …
We consider $\mathbb {Z} _p^{\mathbb {N}} $-extensions $\mathcal {F} $ of a global function field $ F $ and study various aspects of Iwasawa theory with emphasis on the two main …
A Pál - Publications of the Research Institute for Mathematical …, 2010 - ems.press
We evaluate a rigid analytical analogue of the Beilinson–Bloch–Deligne regulator on certain explicit elements in the _K_2 of Drinfeld modular curves, constructed from analogues of …
C Armana - Journal für die reine und angewandte Mathematik …, 2016 - degruyter.com
Les symboles modulaires pour le sous-groupe Γ 0(𝔫) de GL 2(𝔽 q[T]), définis par Teitelbaum, possèdent une présentation par un nombre fini de générateurs et relations …
Y Bermudez Tobon - 2015 - archiv.ub.uni-heidelberg.de
Elliptic modular forms of weight 2 and elliptic modular curves are strongly related. In the rank- 2 Drinfeld module situation, we have still modular curves that can be described analytically …
C Armana - Comptes Rendus Mathematique, 2009 - Elsevier
The group of modular symbols for Fq (T), as defined by Teitelbaum, has a presentation given by generators, called Manin–Teitelbaum symbols, and relations. We give a formula for the …