Deep learning and forecasting in practice: an alternative costs case

T Zema, A Kozina, A Sulich, I Römer… - Procedia Computer …, 2022 - Elsevier
The usage of machine learning methods in the financial sector, regarding repayment
prediction or forecasting, is quite a new topic, constantly gaining in importance. The concept …

Reinforcement learning-based grasp pattern control of upper limb prosthetics in an AI platform

NG Nia, A Nasab, E Kaplanoglu - 2022 3rd International …, 2022 - ieeexplore.ieee.org
Many recent improvements have been made in controlling and simulating prosthetics.
Various hand-grasping poses result from almost 20 degrees of freedom in the human hand …

Estimation of grasp states in prosthetic hands using deep learning

V Parque, T Miyashita - 2020 IEEE 44th Annual Computers …, 2020 - ieeexplore.ieee.org
The estimation of grasp states in myoelectric prosthetic hands is relevant for ergonomic
interfacing, control and rehabilitation initiatives. In this paper we evaluate the possibility to …

Enhancing Prosthetic Hand Control: A Study on IMU Sensor-Based Machine Learning for Precise Hand Orientation Classification

NG Nia, E Kaplanoglu, A Nasab… - SoutheastCon 2024, 2024 - ieeexplore.ieee.org
The functionality of the human upper extremity is a cornerstone of daily life, enabling
essential activities and environmental interactions. This study underscores the importance of …

Disease Detection in Plants Using UAS and Deep Neural Networks

P Mishra - 2024 - search.proquest.com
Detecting diseases in plants poses a significant challenge, addressed in this study through
the integration of Unmanned Aerial Systems (UAS) and Deep Neural Networks (DNNs). The …

Etude et développement de tâches de manipulation mobile dans le contexte de l'industrie 4.0

W Sebbata - 2021 - theses.hal.science
Dans le cadre de l'industrie 4.0, la robotisation des opérations dans les entrepôts logistiques
et les ateliers de fabrication, telle que la saisie/dépose de pièces, le stockage de produits, le …