[HTML][HTML] Deep learning approaches for thermographic imaging

P Kovács, B Lehner, G Thummerer, G Mayr… - Journal of Applied …, 2020 - pubs.aip.org
In this paper, we investigate two deep learning approaches to recovering initial temperature
profiles from thermographic images in non-destructive material testing. First, we trained a …

Linking information theory and thermodynamics to spatial resolution in photothermal and photoacoustic imaging

P Burgholzer, G Mayr, G Thummerer… - Journal of Applied …, 2020 - pubs.aip.org
In this Tutorial, we combine the different scientific fields of information theory,
thermodynamics, regularization theory, and non-destructive imaging, especially for …

Multidimensional reconstruction of internal defects in additively manufactured steel using photothermal super resolution combined with virtual wave-based image …

S Ahmadi, G Thummerer, S Breitwieser… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
We combine three different approaches to greatly enhance the defect reconstruction ability
of active thermographic testing. As experimental approach, laser-based structured …

Reconstructing 3D temperature fields from sparse discrete data by analytical solution-embedded neural network

W Wang, B Yu, Q Ai, M Liu, Y Shuai, X Wang… - Applied Thermal …, 2025 - Elsevier
This study presents an analytical solution-embedded physics informed neural network for
reconstructing three-dimensional temperature fields from sparse discrete data. The Fourier …

Sandwich Face Layer Debonding Detection and Size Estimation by Machine-Learning-Based Evaluation of Electromechanical Impedance Measurements

C Kralovec, B Lehner, M Kirchmayr, M Schagerl - Sensors, 2023 - mdpi.com
The present research proposes a two-step physics-and machine-learning (ML)-based
electromechanical impedance (EMI) measurement data evaluation approach for sandwich …

Acoustic Temperature Tomography using a UNet based Deep Learning Approach

MT Tamire, V Pathuri-Bhuvana… - 2022 30th European …, 2022 - ieeexplore.ieee.org
The authors of this paper propose a deep learning-based tomographic reconstruction
method. Time-of-flight measurements of acoustic waves passing through a region are …

Optimierung des örtlichen Auflösungsvermögens in der aktiven Thermografie durch eine Lockin-Kompensationsmethode und der KI-gestützten Invertierung …

J Rittmann - 2024 - elib.uni-stuttgart.de
Die aktive Thermografie (TT) nutzt den natürlichen diffusen Wärmefluss, um aus der
gemessenen Oberflächentemperatur Rückschlüsse auf die innere Struktur von technischen …

Uncertainty Estimation for Deep Learning-based Thermographic Imaging

B Lehner, T Gallien, P Kovács… - Sensors and …, 2021 - silicon-austria-labs.elsevierpure.com
Thermographic imaging is a contactless and nondestructive way to detect defects inside the
specimen. The current state-of-the-art approach combines model-and deep learning-based …

[PDF][PDF] Uncertainty estimation for nondestructive detection of material defects with u-nets

B Lehner, T Gallien - Proceedings of the 2nd Int. Conf. on …, 2020 - researchgate.net
Thermographic Imaging is a method for the detection of material defects inside the inspected
specimen in a nondestructive manner. U-net was recently proposed to be used for …