An elementary approach to Gaussian multiplicative chaos

N Berestycki - 2017 - projecteuclid.org
A completely elementary and self-contained proof of convergence of Gaussian multiplicative
chaos is given. The argument shows further that the limiting random measure is nontrivial in …

Critical Gaussian multiplicative chaos: a review

E Powell - arXiv preprint arXiv:2006.13767, 2020 - arxiv.org
arXiv:2006.13767v3 [math.PR] 2 Jul 2020 Page 1 arXiv:2006.13767v3 [math.PR] 2 Jul 2020
Critical Gaussian multiplicative chaos: a review Ellen Powell∗ Abstract This review-style article …

Mating of trees for random planar maps and Liouville quantum gravity: a survey

E Gwynne, N Holden, X Sun - arXiv preprint arXiv:1910.04713, 2019 - arxiv.org
We survey the theory and applications of mating-of-trees bijections for random planar maps
and their continuum analog: the mating-of-trees theorem of Duplantier, Miller, and Sheffield …

Gaussian multiplicative chaos through the lens of the 2D Gaussian free field

J Aru - arXiv preprint arXiv:1709.04355, 2017 - arxiv.org
The aim of this review-style paper is to provide a concise, self-contained and unified
presentation of the construction and main properties of Gaussian multiplicative chaos (GMC) …

FZZ formula of boundary Liouville CFT via conformal welding

M Ang, G Remy, X Sun - Journal of the European Mathematical Society, 2023 - ems.press
Abstract Liouville Conformal Field Theory (LCFT) on the disk describes the conformal factor
of the quantum disk, which is the natural random surface in Liouville quantum gravity with …

Random surfaces and Liouville quantum gravity

E Gwynne - Notices of the American Mathematical Society, 2020 - ams.org
What is the most natural way of choosing a random surface (two-dimensional Riemannian
manifold)? If we are given a finite set 𝑋, the easiest way to choose a random element of 𝑋 is …

Random Hermitian matrices and Gaussian multiplicative chaos

N Berestycki, C Webb, MD Wong - Probability Theory and Related Fields, 2018 - Springer
We prove that when suitably normalized, small enough powers of the absolute value of the
characteristic polynomial of random Hermitian matrices, drawn from one-cut regular unitary …

Integrability of SLE via conformal welding of random surfaces

M Ang, N Holden, X Sun - Communications on Pure and …, 2024 - Wiley Online Library
We demonstrate how to obtain integrability results for the Schramm‐Loewner evolution
(SLE) from Liouville conformal field theory (LCFT) and the mating‐of‐trees framework for …

Introduction to the Liouville quantum gravity metric

J Ding, J Dubedat, E Gwynne - Proceedings of the ICM, 2022 - ems.press
Liouville quantum gravity (LQG) is a one-parameter family of models of random fractal
surfaces which first appeared in the physics literature in the 1980s. Recent works have …

KPZ formulas for the Liouville quantum gravity metric

E Gwynne, J Pfeffer - Transactions of the American Mathematical Society, 2022 - ams.org
Let $\gamma\in (0, 2) $, let $ h $ be the planar Gaussian free field, and let $ D_h $ be the
associated $\gamma $-Liouville quantum gravity (LQG) metric. We prove that for any …