JT Griesmer - arXiv preprint arXiv:2002.06994, 2020 - arxiv.org
We prove that there is a set of integers $ A $ having positive upper Banach density whose difference set $ AA:=\{ab: a, b\in A\} $ does not contain a Bohr neighborhood of any integer …
Katznelson's Question is a long-standing open question concerning recurrence in topological dynamics with strong historical and mathematical ties to open problems in …
JT Griesmer - Ergodic Theory and Dynamical Systems, 2019 - cambridge.org
We construct a set of integers produces a rigidity sequence. This construction generalizes or strengthens results of Katznelson, Saeki (on equidistribution and the Bohr topology), Forrest …
M Björklund, JT Griesmer - Journal of Fourier Analysis and Applications, 2019 - Springer
We answer a question of Hegyvári and Ruzsa concerning effective estimates of the Bohr- regularity of certain triple sums of sets with positive upper Banach densities in the integers …
JT Griesmer - arXiv preprint arXiv:2108.01302, 2021 - arxiv.org
If $ A $ is a set of integers having positive upper Banach density and $ r, s, t $ are nonzero integers whose sum is zero, a theorem of Bergelson and Ruzsa says that the set $ rA+ sA+ …
JT Griesmer - arXiv preprint arXiv:1807.01694, 2018 - arxiv.org
We study pairs of subsets $ A, B $ of a compact abelian group $ G $ where the sumset $ A+ B:=\{a+ b: a\in A, b\in B\} $ is small. Let $ m $ and $ m_ {*} $ be Haar measure and inner …
AN Le, TH Lê - arXiv preprint arXiv:2112.11997, 2021 - arxiv.org
Let $ G $ be a compact abelian group and $\phi_1,\phi_2,\phi_3 $ be continuous endomorphisms on $ G $. Under certain natural assumptions on the $\phi_i $'s, we prove …
JT Griesmer - arXiv preprint arXiv:1608.01014, 2016 - arxiv.org
For a fixed prime $ p $, $\mathbb F_ {p} $ denotes the field with $ p $ elements, and $\mathbb F_ {p}^{\omega} $ denotes the countable direct sum $\bigoplus_ {n …
JT Griesmer - arXiv preprint arXiv:1701.00465, 2017 - arxiv.org
We collect problems on recurrence for measure preserving and topological actions of a countable abelian group, considering combinatorial versions of these problems as well. We …