Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments

X Bai, X Wang, X Liu, Q Liu, J Song, N Sebe, B Kim - Pattern Recognition, 2021 - Elsevier
Deep learning has recently achieved great success in many visual recognition tasks.
However, the deep neural networks (DNNs) are often perceived as black-boxes, making …

A review of convolutional neural network architectures and their optimizations

S Cong, Y Zhou - Artificial Intelligence Review, 2023 - Springer
The research advances concerning the typical architectures of convolutional neural
networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this …

A survey of quantization methods for efficient neural network inference

A Gholami, S Kim, Z Dong, Z Yao… - Low-Power Computer …, 2022 - taylorfrancis.com
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …

Pruning and quantization for deep neural network acceleration: A survey

T Liang, J Glossner, L Wang, S Shi, X Zhang - Neurocomputing, 2021 - Elsevier
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …

Binary neural networks: A survey

H Qin, R Gong, X Liu, X Bai, J Song, N Sebe - Pattern Recognition, 2020 - Elsevier
The binary neural network, largely saving the storage and computation, serves as a
promising technique for deploying deep models on resource-limited devices. However, the …

Forward and backward information retention for accurate binary neural networks

H Qin, R Gong, X Liu, M Shen, Z Wei… - Proceedings of the …, 2020 - openaccess.thecvf.com
Weight and activation binarization is an effective approach to deep neural network
compression and can accelerate the inference by leveraging bitwise operations. Although …

Scaling for edge inference of deep neural networks

X Xu, Y Ding, SX Hu, M Niemier, J Cong, Y Hu… - Nature Electronics, 2018 - nature.com
Deep neural networks offer considerable potential across a range of applications, from
advanced manufacturing to autonomous cars. A clear trend in deep neural networks is the …

Towards accurate post-training network quantization via bit-split and stitching

P Wang, Q Chen, X He… - … Conference on Machine …, 2020 - proceedings.mlr.press
Network quantization is essential for deploying deep models to IoT devices due to its high
efficiency. Most existing quantization approaches rely on the full training datasets and the …

Adabin: Improving binary neural networks with adaptive binary sets

Z Tu, X Chen, P Ren, Y Wang - European conference on computer vision, 2022 - Springer
This paper studies the Binary Neural Networks (BNNs) in which weights and activations are
both binarized into 1-bit values, thus greatly reducing the memory usage and computational …

Recent advances in efficient computation of deep convolutional neural networks

J Cheng, P Wang, G Li, Q Hu, H Lu - Frontiers of Information Technology & …, 2018 - Springer
Deep neural networks have evolved remarkably over the past few years and they are
currently the fundamental tools of many intelligent systems. At the same time, the …