[HTML][HTML] On Kac's chaos and related problems

M Hauray, S Mischler - Journal of Functional Analysis, 2014 - Elsevier
This paper is devoted to establish quantitative and qualitative estimates related to the notion
of chaos as firstly formulated by M. Kac [41] in his study of mean-field limit for systems of N …

Entropy and chaos in the Kac model

EA Carlen, MC Carvalho, JL Roux, M Loss… - arXiv preprint arXiv …, 2008 - arxiv.org
We investigate the behavior in $ N $ of the $ N $--particle entropy functional for Kac's
stochastic model of Boltzmann dynamics, and its relation to the entropy function for solutions …

A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit

N Grunewald, F Otto, C Villani… - Annales de l'IHP …, 2009 - numdam.org
Nous étudions un système sur réseau à variable de spin continue. Dans la première partie,
nous établissons deux résultats abstraits: des conditions suffisantes pour une inégalité de …

Local Aronson–Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds

P Lu, L Ni, JL Vázquez, C Villani - Journal de mathématiques pures et …, 2009 - Elsevier
In this work we derive local gradient and Laplacian estimates of the Aronson–Bénilan and Li–
Yau type for positive solutions of porous medium equations posed on Riemannian manifolds …

Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws

B Tóth, B Valkó - Journal of Statistical Physics, 2003 - Springer
We present the derivation of the hydrodynamic limit under Eulerian scaling for a general
class of one-dimensional interacting particle systems with two or more conservation laws …

Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential

G Menz, F Otto - 2013 - projecteuclid.org
We consider a noninteracting unbounded spin system with conservation of the mean spin.
We derive a uniform logarithmic Sobolev inequality (LSI) provided the single-site potential is …

Limit shapes and local statistics for the stochastic six-vertex model

A Aggarwal - Communications in Mathematical Physics, 2020 - Springer
In this paper we consider the stochastic six-vertex model on a cylinder with arbitrary initial
data. First, we show that it exhibits a limit shape in the thermodynamic limit, whose density …

Entropy of open lattice systems

B Derrida, JL Lebowitz, ER Speer - Journal of Statistical Physics, 2007 - Springer
We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium
measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion …

Atypical behaviors of a tagged particle in asymmetric simple exclusion

S Sethuraman, SRS Varadhan - arXiv preprint arXiv:2311.07800, 2023 - arxiv.org
Consider the asymmetric nearest-neighbor exclusion process (ASEP) on ${\mathbb Z} $ with
single particle drift $\gamma> 0$, starting from a Bernoulli product invariant measure …

The gradient flow approach to hydrodynamic limits for the simple exclusion process

M Fathi, M Simon - From Particle Systems to Partial Differential Equations …, 2016 - Springer
We present a new approach to prove the macroscopic hydrodynamic behaviour for
interacting particle systems, and as an example we treat the well-known case of the …