[HTML][HTML] Relevance of polynomial matrix decompositions to broadband blind signal separation

S Redif, S Weiss, JG McWhirter - Signal processing, 2017 - Elsevier
The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue
decomposition (EVD) to polynomial matrices. The purpose of this article is to provide a …

Eigenvalue decomposition of a parahermitian matrix: Extraction of analytic eigenvectors

S Weiss, IK Proudler, FK Coutts… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
An analytic parahermitian matrix admits in almost all cases an eigenvalue decomposition
(EVD) with analytic eigenvalues and eigenvectors. We have previously defined a discrete …

Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices

S Redif, S Weiss, JG McWhirter - IEEE Transactions on Signal …, 2014 - ieeexplore.ieee.org
For parahermitian polynomial matrices, which can be used, for example, to characterize
space-time covariance in broadband array processing, the conventional eigenvalue …

Eigenvalue decomposition of a parahermitian matrix: Extraction of analytic eigenvalues

S Weiss, IK Proudler, FK Coutts - IEEE Transactions on Signal …, 2021 - ieeexplore.ieee.org
An analytic parahermitian matrix admits an eigenvalue decomposition (EVD) with analytic
eigenvalues and eigenvectors except in the case of multiplexed data. In this paper, we …

On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix

S Weiss, J Pestana, IK Proudler - IEEE Transactions on Signal …, 2018 - ieeexplore.ieee.org
This paper addresses the extension of the factorization of a Hermitian matrix by an
eigenvalue decomposition (EVD) to the case of a parahermitian matrix that is analytic at …

MVDR broadband beamforming using polynomial matrix techniques

S Weiss, S Bendoukha, A Alzin… - 2015 23rd European …, 2015 - ieeexplore.ieee.org
This paper presents initial progress on formulating minimum variance distortionless
response (MVDR) broadband beam-forming using a generalised sidelobe canceller (GSC) …

Iterative approximation of analytic eigenvalues of a parahermitian matrix EVD

S Weiss, IK Proudler, FK Coutts… - ICASSP 2019-2019 …, 2019 - ieeexplore.ieee.org
We present an algorithm that extracts analytic eigenvalues from a parahermitian matrix.
Operating in the discrete Fourier transform domain, an inner iteration re-establishes the lost …

A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices

M Tohidian, H Amindavar, AM Reza - EURASIP Journal on Advances in …, 2013 - Springer
In this article, we address the problem of singular value decomposition of polynomial
matrices and eigenvalue decomposition of para-Hermitian matrices. Discrete Fourier …

Support estimation of analytic eigenvectors of parahermitian matrices

F Khattak, IK Proudler, S Weiss - … International Conference on …, 2022 - ieeexplore.ieee.org
Extracting analytic eigenvectors from parahermitian matrices relies on phase smoothing in
the discrete Fourier transform (DFT) domain as its most expensive algorithmic component …

Generalized polynomial power method

FA Khattak, IK Proudler, S Weiss - 2023 Sensor Signal …, 2023 - ieeexplore.ieee.org
The polynomial power method repeatedly multiplies a polynomial vector by a para-
Hermitian matrix containing spectrally majorised eigenvalue to estimate the dominant …