Retrieval of forest vertical structure from PolInSAR data by machine learning using LIDAR-derived features

G Brigot, M Simard, E Colin-Koeniguer, A Boulch - Remote Sensing, 2019 - mdpi.com
This paper presents a machine learning based method to predict the forest structure
parameters from L-band polarimetric and interferometric synthetic aperture radar (PolInSAR) …

Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR

X Sun, B Wang, M Xiang, L Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The polarimetric interferometric synthetic aperture radar (Pol-InSAR) model under P-band
observations exhibits vertical structure diversity. Compared with the exponential-based …

Coherence feature modelling for single-baseline Pol-InSAR

X Sun, S Jiang, C Song - IET Conference Proceedings CP874, 2023 - IET
In order to solve the problem that P-band polarimetric interferometric synthetic aperture
radar (Pol-InSAR) observation is difficult to be modelled, this paper focuses on the analysis …

Prediction of forest canopy structure from PolInSAR dataset

G Brigot, M Simard, E Koeniguer… - … and Remote Sensing …, 2017 - ieeexplore.ieee.org
This paper presents the overall strategy of fusion of full waveform LIDAR and L-band
Polarimetric and Interferometric radar (PolInSAR) images of forests in order to predict the …