A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

Subdomain adaptation transfer learning network for fault diagnosis of roller bearings

Z Wang, X He, B Yang, N Li - IEEE Transactions on Industrial …, 2021 - ieeexplore.ieee.org
Due to the data distribution discrepancy, fault diagnosis models, trained with labeled data in
one scene, likely fails in classifying by unlabeled data acquired from the other scenes …

Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study

Z Zhao, Q Zhang, X Yu, C Sun, S Wang… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Recent progress on intelligent fault diagnosis (IFD) has greatly depended on deep
representation learning and plenty of labeled data. However, machines often operate with …

A survey of transfer learning for machinery diagnostics and prognostics

S Yao, Q Kang, MC Zhou, MJ Rawa… - Artificial Intelligence …, 2023 - Springer
In industrial manufacturing systems, failures of machines caused by faults in their key
components greatly influence operational safety and system reliability. Many data-driven …

Bayesian transfer learning with active querying for intelligent cross-machine fault prognosis under limited data

R Zhu, W Peng, D Wang, CG Huang - Mechanical Systems and Signal …, 2023 - Elsevier
Most existing deep learning (DL)-based health prognostic methods assume that the training
and testing datasets are from identical machines operating under similar conditions …

[HTML][HTML] Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization

Y Himeur, S Al-Maadeed, H Kheddar… - … Applications of Artificial …, 2023 - Elsevier
Recently, developing automated video surveillance systems (VSSs) has become crucial to
ensure the security and safety of the population, especially during events involving large …

Adversarial domain-invariant generalization: A generic domain-regressive framework for bearing fault diagnosis under unseen conditions

L Chen, Q Li, C Shen, J Zhu, D Wang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Recently, various fault diagnosis methods based on domain adaptation (DA) have been
explored to solve the problem of discrepancy between the source and target domains …

Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

L Ma, B Jiang, L Xiao, N Lu - Mechanical Systems and Signal Processing, 2023 - Elsevier
Fault diagnosis of bearing under variable working conditions is widely required in practice,
and the combination of working conditions and fault fluctuations increases the complexity of …

A partial domain adaptation scheme based on weighted adversarial nets with improved CBAM for fault diagnosis of wind turbine gearbox

Y Zhu, Y Pei, A Wang, B Xie, Z Qian - Engineering Applications of Artificial …, 2023 - Elsevier
Most domain adaptation methods for fault diagnosis depend heavily on the precondition that
the source and target domain have an identical label space, which is hard to be satisfied in …