Deep learning-based vehicle behavior prediction for autonomous driving applications: A review

S Mozaffari, OY Al-Jarrah, M Dianati… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Behaviour prediction function of an autonomous vehicle predicts the future states of the
nearby vehicles based on the current and past observations of the surrounding environment …

Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

V Bharilya, N Kumar - Vehicular Communications, 2024 - Elsevier
The significant contribution of human errors, accounting for approximately 94%(with a
margin of±2.2%), to road crashes leading to casualties, vehicle damages, and safety …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network

X Mo, Z Huang, Y Xing, C Lv - IEEE Transactions on Intelligent …, 2022 - ieeexplore.ieee.org
Simultaneous trajectory prediction for multiple heterogeneous traffic participants is essential
for safe and efficient operation of connected automated vehicles under complex driving …

AI-TP: Attention-based interaction-aware trajectory prediction for autonomous driving

K Zhang, L Zhao, C Dong, L Wu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Despite the advancements in the technologies of autonomous driving, it is still challenging to
study the safety of a self-driving vehicle. Trajectory prediction is one core function of an …

TrajGAT: A map-embedded graph attention network for real-time vehicle trajectory imputation of roadside perception

C Zhao, A Song, Y Du, B Yang - Transportation research part C: emerging …, 2022 - Elsevier
With the increasing deployment of roadside sensors, vehicle trajectories can be collected for
driving behavior analysis and vehicle-highway automation systems. However, due to …

Trajectory prediction for autonomous driving using spatial-temporal graph attention transformer

K Zhang, X Feng, L Wu, Z He - IEEE Transactions on Intelligent …, 2022 - ieeexplore.ieee.org
For autonomous vehicles driving on roads, future trajectories of surrounding traffic agents
(eg, vehicles, bicycles, pedestrians) are essential information. The prediction of future …

ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer

J Kong, X Fan, M Zuo, M Deveci, X Jin, K Zhong - Information Fusion, 2024 - Elsevier
The rapid development of road traffic networks has provided a wealth of research data for
intelligent transportation systems. We are faced with vast high-dimensional traffic flow data …

Hybrid deep learning models for traffic prediction in large-scale road networks

G Zheng, WK Chai, JL Duanmu, V Katos - Information Fusion, 2023 - Elsevier
Traffic prediction is an important component in Intelligent Transportation Systems (ITSs) for
enabling advanced transportation management and services to address worsening traffic …

Multiple dynamic graph based traffic speed prediction method

Z Zhang, Y Li, H Song, H Dong - Neurocomputing, 2021 - Elsevier
Traffic speed prediction is a crucial and challenging task for intelligent transportation
systems. The prediction task can be accomplished via graph neural networks with structured …