Memristive technologies for data storage, computation, encryption, and radio-frequency communication

M Lanza, A Sebastian, WD Lu, M Le Gallo, MF Chang… - Science, 2022 - science.org
Memristive devices, which combine a resistor with memory functions such that voltage
pulses can change their resistance (and hence their memory state) in a nonvolatile manner …

Research progress on memristor: From synapses to computing systems

X Yang, B Taylor, A Wu, Y Chen… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
As the limits of transistor technology are approached, feature size in integrated circuit
transistors has been reduced very near to the minimum physically-realizable channel length …

[HTML][HTML] An analog-AI chip for energy-efficient speech recognition and transcription

S Ambrogio, P Narayanan, A Okazaki, A Fasoli… - Nature, 2023 - nature.com
Abstract Models of artificial intelligence (AI) that have billions of parameters can achieve
high accuracy across a range of tasks,, but they exacerbate the poor energy efficiency of …

A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices

YC Chiu, WS Khwa, CS Yang, SH Teng, HY Huang… - Nature …, 2023 - nature.com
Artificial intelligence edge devices should offer high inference accuracy and rapid response
times, as well as being energy efficient. Ensuring the security of these devices against …

HERMES-Core—A 1.59-TOPS/mm2 PCM on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs

R Khaddam-Aljameh, M Stanisavljevic… - IEEE Journal of Solid …, 2022 - ieeexplore.ieee.org
We present a 256 256 in-memory compute (IMC) core designed and fabricated in 14-nm
CMOS technology with backend-integrated multi-level phase change memory (PCM). It …

Biohd: an efficient genome sequence search platform using hyperdimensional memorization

Z Zou, H Chen, P Poduval, Y Kim, M Imani… - Proceedings of the 49th …, 2022 - dl.acm.org
In this paper, we propose BioHD, a novel genomic sequence searching platform based on
Hyper-Dimensional Computing (HDC) for hardware-friendly computation. BioHD transforms …

An 8-Mb DC-current-free binary-to-8b precision ReRAM nonvolatile computing-in-memory macro using time-space-readout with 1286.4-21.6 TOPS/W for edge-AI …

JM Hung, YH Huang, SP Huang… - … Solid-State Circuits …, 2022 - ieeexplore.ieee.org
Battery-powered edge-AI devices require nonvolatile computing-in-memory (nvCIM) macros
for nonvolatile data storage and multiply-and-accumulate (MAC) operations. High inference …

A 40-nm, 2M-cell, 8b-precision, hybrid SLC-MLC PCM computing-in-memory macro with 20.5-65.0 TOPS/W for tiny-Al edge devices

WS Khwa, YC Chiu, CJ Jhang… - … Solid-State Circuits …, 2022 - ieeexplore.ieee.org
Efficient edge computing, with sufficiently large on-chip memory capacity, is essential in the
internet-of-everything era. Nonvolatile computing-in-memory (nvCIM) reduces the data …

An overview of processing-in-memory circuits for artificial intelligence and machine learning

D Kim, C Yu, S Xie, Y Chen, JY Kim… - IEEE Journal on …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) and machine learning (ML) are revolutionizing many fields of study,
such as visual recognition, natural language processing, autonomous vehicles, and …

A 22nm 4Mb STT-MRAM data-encrypted near-memory computation macro with a 192GB/s read-and-decryption bandwidth and 25.1-55.1 TOPS/W 8b MAC for AI …

YC Chiu, CS Yang, SH Teng, HY Huang… - … Solid-State Circuits …, 2022 - ieeexplore.ieee.org
Nonvolatile computing-in-memory (nvCIM)[1]–[4] is ideal for battery-powered tiny artificial
intelligence (AI) edge devices that require nonvolatile data storage and low system-level …