The principal motivation of this paper is to establish a new integral equality related to k- Riemann Liouville fractional operator. Employing this equality, we present several new …
The goal of this paper was to study the oscillations of a class of fourth-order nonlinear delay differential equations with a middle term. Novel oscillation theorems built on a proper Riccati …
This paper involves extended b− metric versions of a fractional differential equation, a system of fractional differential equations and two‐dimensional (2D) linear Fredholm integral …
H Afshari, H Hosseinpour, HR Marasi - Advances in Difference Equations, 2021 - Springer
In this paper we study fractional initial value problems with Caputo–Fabrizio derivative which involves nonsingular kernel. First we apply α-ℓ-contraction and α-type F-contraction …
The main purpose of this paper is to present some fixed-point results for a pair of fuzzy dominated mappings which are generalized V-contractions in modular-like metric spaces …
SS Alzaid, BST Alkahtani, S Sharma… - Journal of Function …, 2021 - Wiley Online Library
In this paper, we have extended the model of HIV‐1 infection to the fractional mathematical model using Caputo‐Fabrizio and Atangana‐Baleanu fractional derivative operators. A …
Fredholm-type integral equation in controlled metric-like spaces | Advances in Continuous and Discrete Models Skip to main content SpringerLink Log in Menu Find a journal Publish with us …
C Chen, L Liu, Q Dong - Filomat, 2023 - doiserbia.nb.rs
The present paper is devoted to discussing a class of nonlinear Caputo-type fractional differential equations with two-point type boundary value conditions. We investigate the …
This manuscript investigates fixed point of single‐valued Hardy‐Roger's type F‐contraction globally as well as locally in a convex b‐metric space. The paper, using generalized Mann's …