Sporadic cubic torsion

M Derickx, A Etropolski, M van Hoeij, JS Morrow… - Algebra & Number …, 2021 - msp.org
Let K be a number field, and let E∕ K be an elliptic curve over K. The Mordell–Weil theorem
asserts that the K-rational points E (K) of E form a finitely generated abelian group. In this …

[HTML][HTML] Modular units and cuspidal divisor classes on X0 (n2M) with n| 24 and M squarefree

L Wang, Y Yang - Journal of Algebra, 2020 - Elsevier
For a positive integer N, let C (N) be the subgroup of J 0 (N) generated by the equivalence
classes of cuspidal divisors of degree 0 and C (N)(Q):= C (N)∩ J 0 (N)(Q) be its Q-rational …

Modularity of residual Galois extensions and the Eisenstein ideal

T Berger, K Klosin - Transactions of the American Mathematical Society, 2019 - ams.org
For a totally real field $ F $, a finite extension $\mathbf {F} $ of $\mathbf {F} _p $, and a
Galois character $\chi: G_F\to\mathbf {F}^{\times} $ unramified away from a finite set of …

Rational torsion of generalised modular Jacobians of odd level

M Curcó-Iranzo - Research in the Mathematical Sciences, 2025 - Springer
We consider the generalised Jacobian\(J_ {0}(N) _ {{\textbf {m}}}\) of the modular curve\(X_
{0}(N)\) of level N, with respect to the modulus\({\textbf {m}}\) consisting of all cusps on the …

Quantitative non-vanishing of Dirichlet L-values modulo p

A Burungale, HS Sun - Mathematische Annalen, 2020 - Springer
Let p be an odd prime and ka non-negative integer. Let N be a positive integer such that
p\not ∣ N p∤ N and λ λ a Dirichlet character modulo N. We obtain quantitative lower bounds …

The rational cuspidal subgroup of J 0 (p 2 M) J_0(p^2M) with M squarefree

JW Guo, Y Yang, H Yoo, M Yu - Mathematische Nachrichten, 2023 - Wiley Online Library
For a positive integer N, let X 0 (N) X_0(N) be the modular curve over QQ and J 0 (N) J_0(N)
its Jacobian variety. We prove that the rational cuspidal subgroup of J 0 (N) J_0(N) is equal …

Structure of the cuspidal rational torsion subgroup of J1(pn)

Y Yang, JD Yu - Journal of the London Mathematical Society, 2010 - Wiley Online Library
Let p be a prime and let J1 (pn) denote the Jacobian of the modular curve X1 (pn). The
Jacobian J1 (pn) contains a ℚ‐rational torsion subgroup generated by the cuspidal divisor …

A Note on Nonvanishing Properties on Mod Drichlet -values and Application to K-groups

J Li - arXiv preprint arXiv:1709.02507, 2017 - arxiv.org
Let $ F $ be a number field. Let $ p $ be a prime number. Washington proved the $\ell $-part
of the class numbers in cyclotomic $\mathbb {Z} _p $ extension of $ F $ is bounded when $ F …