Gradient regularity in mixed local and nonlocal problems

C De Filippis, G Mingione - Mathematische Annalen, 2024 - Springer
Minimizers of functionals of the type w ↦ ∫ Ω [ | D w | p - f w ] d x + ∫ R n ∫ R n | w ( x ) - w (
y ) | γ | x - y | n + s γ d x d y \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} …

[HTML][HTML] Local behavior of fractional p-minimizers

A Di Castro, T Kuusi, G Palatucci - Annales de l'Institut Henri Poincaré C …, 2016 - Elsevier
Local behavior of fractional p-minimizers - ScienceDirect Skip to main contentSkip to article
Elsevier logo Journals & Books Search RegisterSign in View PDF Download full issue Search …

Eigenvalues for double phase variational integrals

F Colasuonno, M Squassina - Annali di Matematica Pura ed Applicata …, 2016 - Springer
We study an eigenvalue problem in the framework of double phase variational integrals, and
we introduce a sequence of nonlinear eigenvalues by a minimax procedure. We establish a …

Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations

P Garain, E Lindgren - Calculus of Variations and Partial Differential …, 2023 - Springer
We consider equations involving a combination of local and nonlocal degenerate p-Laplace
operators. The main contribution of the paper is almost Lipschitz regularity for the …

[HTML][HTML] Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case

L Brasco, E Lindgren, A Schikorra - Advances in Mathematics, 2018 - Elsevier
We prove higher Hölder regularity for solutions of equations involving the fractional p-
Laplacian of order s, when p≥ 2 and 0< s< 1. In particular, we provide an explicit Hölder …

[HTML][HTML] A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian

LM Del Pezzo, A Quaas - Journal of Differential Equations, 2017 - Elsevier
A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian - ScienceDirect
Skip to main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in …

The Brezis–Nirenberg problem for the fractional p-Laplacian

S Mosconi, K Perera, M Squassina, Y Yang - Calculus of Variations and …, 2016 - Springer
We obtain nontrivial solutions to the Brezis–Nirenberg problem for the fractional p-Laplacian
operator, extending some results in the literature for the fractional Laplacian. The quasilinear …

Stability of variational eigenvalues for the fractional p-Laplacian

L Brasco, E Parini, M Squassina - arXiv preprint arXiv:1503.04182, 2015 - arxiv.org
By virtue of $\Gamma-$ convergence arguments, we investigate the stability of variational
eigenvalues associated with a given topological index for the fractional $ p $-Laplacian …

Ground states for fractional magnetic operators

P d'Avenia, M Squassina - ESAIM: Control, Optimisation and Calculus …, 2018 - numdam.org
We study a class of minimization problems for a nonlocal operator involving an external
magnetic potential. The notions are physically justified and consistent with the case of …

Higher differentiability for the fractional p-Laplacian

L Diening, K Kim, HS Lee, S Nowak - Mathematische Annalen, 2024 - Springer
In this work, we study the higher differentiability of solutions to the inhomogeneous fractional
p-Laplace equation under different regularity assumptions on the data. In the superquadratic …