Neural network approaches for parameterized optimal control

D Verma, N Winovich, L Ruthotto… - arXiv preprint arXiv …, 2024 - arxiv.org
We consider numerical approaches for deterministic, finite-dimensional optimal control
problems whose dynamics depend on unknown or uncertain parameters. We seek to …

[HTML][HTML] Optimal polynomial feedback laws for finite horizon control problems

K Kunisch, D Vásquez-Varas - Computers & Mathematics with Applications, 2023 - Elsevier
A learning technique for finite horizon optimal control problems and its approximation based
on polynomials is analyzed. It allows to circumvent, in part, the curse dimensionality which is …

Numerical realization of the Mortensen observer via a Hessian-augmented polynomial approximation of the value function

T Breiten, KK Kunisch, J Schröder - SIAM Journal on Scientific Computing, 2025 - SIAM
Two related numerical schemes for the realization of the Mortensen observer or minimum
energy estimator for the state reconstruction of nonlinear dynamical systems subject to …

A comparison study of supervised learning techniques for the approximation of high dimensional functions and feedback control

M Oster, L Saluzzi, T Wenzel - arXiv preprint arXiv:2402.01402, 2024 - arxiv.org
Approximation of high dimensional functions is in the focus of machine learning and data-
based scientific computing. In many applications, empirical risk minimisation techniques …

Consistent smooth approximation of feedback laws for infinite horizon control problems with non-smooth value functions

K Kunisch, D Vásquez-Varas - Journal of Differential Equations, 2024 - Elsevier
In this work the approximation of non necessarily smooth value functions associated to
infinite horizon optimal control problems via sequences of consistent feedback laws based …

Nonuniform random feature models using derivative information

K Pieper, Z Zhang, G Zhang - arXiv preprint arXiv:2410.02132, 2024 - arxiv.org
We propose nonuniform data-driven parameter distributions for neural network initialization
based on derivative data of the function to be approximated. These parameter distributions …

Some Thoughts on Compositional Tensor Networks

R Schneider, M Oster - Multiscale, Nonlinear and Adaptive Approximation …, 2024 - Springer
In these notes we present some first ideas on the composition of tensor trains for the use in
scientific computing. We discuss the relation to deep neural networks and the potential role …

Smooth approximation of feedback laws for infinite horizon control problems with non-smooth value functions

K Kunisch, D Vásquez-Varas - arXiv preprint arXiv:2312.11981, 2023 - arxiv.org
In this work the synthesis of approximate optimal and smooth feedback laws for infinite
horizon optimal control problems is addressed. In this regards, $ L^{p} $ type error bounds of …