Deep reinforcement learning: A brief survey

K Arulkumaran, MP Deisenroth… - IEEE Signal …, 2017 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence
(AI) and represents a step toward building autonomous systems with a higher-level …

A brief survey of deep reinforcement learning

K Arulkumaran, MP Deisenroth, M Brundage… - arXiv preprint arXiv …, 2017 - arxiv.org
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step
towards building autonomous systems with a higher level understanding of the visual world …

Mastering diverse domains through world models

D Hafner, J Pasukonis, J Ba, T Lillicrap - arXiv preprint arXiv:2301.04104, 2023 - arxiv.org
Developing a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …

Mastering atari with discrete world models

D Hafner, T Lillicrap, M Norouzi, J Ba - arXiv preprint arXiv:2010.02193, 2020 - arxiv.org
Intelligent agents need to generalize from past experience to achieve goals in complex
environments. World models facilitate such generalization and allow learning behaviors …

Soft actor-critic algorithms and applications

T Haarnoja, A Zhou, K Hartikainen, G Tucker… - arXiv preprint arXiv …, 2018 - arxiv.org
Model-free deep reinforcement learning (RL) algorithms have been successfully applied to a
range of challenging sequential decision making and control tasks. However, these methods …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

First return, then explore

A Ecoffet, J Huizinga, J Lehman, KO Stanley, J Clune - Nature, 2021 - nature.com
Reinforcement learning promises to solve complex sequential-decision problems
autonomously by specifying a high-level reward function only. However, reinforcement …

Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures

L Espeholt, H Soyer, R Munos… - International …, 2018 - proceedings.mlr.press
In this work we aim to solve a large collection of tasks using a single reinforcement learning
agent with a single set of parameters. A key challenge is to handle the increased amount of …

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor

T Haarnoja, A Zhou, P Abbeel… - … conference on machine …, 2018 - proceedings.mlr.press
Abstract Model-free deep reinforcement learning (RL) algorithms have been demonstrated
on a range of challenging decision making and control tasks. However, these methods …

Fully decentralized multi-agent reinforcement learning with networked agents

K Zhang, Z Yang, H Liu, T Zhang… - … conference on machine …, 2018 - proceedings.mlr.press
We consider the fully decentralized multi-agent reinforcement learning (MARL) problem,
where the agents are connected via a time-varying and possibly sparse communication …