Federated learning for smart healthcare: A survey

DC Nguyen, QV Pham, PN Pathirana, M Ding… - ACM Computing …, 2022 - dl.acm.org
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …

A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …

Trustworthy llms: a survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, R Guo, H Cheng… - arXiv preprint arXiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Membership inference attacks from first principles

N Carlini, S Chien, M Nasr, S Song… - … IEEE Symposium on …, 2022 - ieeexplore.ieee.org
A membership inference attack allows an adversary to query a trained machine learning
model to predict whether or not a particular example was contained in the model's training …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arXiv preprint arXiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

Extracting training data from large language models

N Carlini, F Tramer, E Wallace, M Jagielski… - 30th USENIX Security …, 2021 - usenix.org
It has become common to publish large (billion parameter) language models that have been
trained on private datasets. This paper demonstrates that in such settings, an adversary can …

Membership inference attacks on machine learning: A survey

H Hu, Z Salcic, L Sun, G Dobbie, PS Yu… - ACM Computing Surveys …, 2022 - dl.acm.org
Machine learning (ML) models have been widely applied to various applications, including
image classification, text generation, audio recognition, and graph data analysis. However …

Generative adversarial networks: A survey toward private and secure applications

Z Cai, Z Xiong, H Xu, P Wang, W Li, Y Pan - ACM Computing Surveys …, 2021 - dl.acm.org
Generative Adversarial Networks (GANs) have promoted a variety of applications in
computer vision and natural language processing, among others, due to its generative …

Dataset distillation using neural feature regression

Y Zhou, E Nezhadarya, J Ba - Advances in Neural …, 2022 - proceedings.neurips.cc
Dataset distillation aims to learn a small synthetic dataset that preserves most of the
information from the original dataset. Dataset distillation can be formulated as a bi-level …