Forecasting of Sea Ice Concentration using CNN, PDE discovery and Bayesian Networks

J Borisova, R Titov, K Shakhkyan, A Hvatov - Procedia Computer Science, 2023 - Elsevier
Predicting the spatiotemporal data of natural processes is crucial for both academic
research and industrial applications. In particular, ice formation and melting processes play …

Surrogate Modelling for Sea Ice Concentration using Lightweight Neural Ensemble

J Borisova, NO Nikitin - arXiv preprint arXiv:2312.04330, 2023 - arxiv.org
The modeling and forecasting of sea ice conditions in the Arctic region are important tasks
for ship routing, offshore oil production, and environmental monitoring. We propose the …

Lightweight Neural Ensemble Approach for Arctic Sea Ice Forecasting

J Borisova, NO Nikitin - 2024 IEEE Congress on Evolutionary …, 2024 - ieeexplore.ieee.org
Predictive modeling of sea ice conditions in the Arctic region is important task for
environmental monitoring, climate change issue and offshore oil production. The existing …

Closed-form algebraic expressions discovery using combined evolutionary optimization and sparse regression approach

M Merezhnikov, A Hvatov - Procedia Computer Science, 2020 - Elsevier
In the literature, vast amounts of methods of time-series modeling are described. Most for the
methods, either classical or machine learning, left interpretation to the expert. Even though …

[HTML][HTML] NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China

Y Yan, W Gu, AMU Gierisch, Y Xu… - Geoscientific Model …, 2022 - gmd.copernicus.org
Severe ice conditions in the Bohai Sea could cause serious harm to maritime traffic, offshore
oil exploitation, aquaculture, and other economic activities in the surrounding regions. In …

Hybrid modelling of environmental processes using composite models

J Borisova, A Aladina, NO Nikitin - Procedia Computer Science, 2021 - Elsevier
This paper discusses the application of hybridization as a modeling approach involving the
combination of physics-based numerical models and data-driven models as a part of the …

[PDF][PDF] Система оперативного моделирования Северного Ледовитого океана и прилегающих к нему акваторий на основе российской модели INMOM-Арктика

ВВ Фомин, ИИ Панасенкова, АВ Гусев… - Арктика: экология и …, 2021 - researchgate.net
Для воспроизведения текущего состояния и краткосрочного прогноза
гидротермодинамики Северного Ледовитого океана (СЛО) и прилегающих к нему …

Model-agnostic multi-objective approach for the evolutionary discovery of mathematical models

A Hvatov, M Maslyaev, IS Polonskaya… - … Learning Algorithms and …, 2021 - Springer
In modern data science, it is often not enough to obtain only a data-driven model with a good
prediction quality. On the contrary, it is more interesting to understand the properties of the …

Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression

I Deeva, NO Nikitin, AV Kaluyzhnaya - Procedia Computer Science, 2019 - Elsevier
The various real-world tasks of environmental management make it necessary to obtain the
hindcasts and forecasts of natural events (wind, ocean waves and currents, sea ice, etc.) …

[HTML][HTML] The article was received on: 03.02. 2021

VV Fomin, II Panasenkova, AV Gusev, AV Chaplygin… - eng.arctica-ac.ru
A regional σ-model INMOM-Arctic has been prepared on the basis of the Russian ocean
general circulation model INMOM (Institute of Numerical Mathematics Ocean Model) to …