[HTML][HTML] Pre-Processing techniques and artificial intelligence algorithms for electrocardiogram (ECG) signals analysis: A comprehensive review

MF Safdar, RM Nowak, P Pałka - Computers in Biology and Medicine, 2024 - Elsevier
Electrocardiogram (ECG) are the physiological signals and a standard test to measure the
heart's electrical activity that depicts the movement of cardiac muscles. A review study has …

A new fog computing resource management (FRM) model based on hybrid load balancing and scheduling for critical healthcare applications

AA Mutlag, MK Abd Ghani, O Mohd… - Physical …, 2023 - Elsevier
Critical healthcare application tasks require a real-time response because it affects patients'
life. Fog computing is the best solution to get a fast response and less energy consumption …

ECG Based Heart Disease Classification: Advancement and Review of Techniques

A Gour, M Gupta, R Wadhvani, S Shukla - Procedia Computer Science, 2024 - Elsevier
The heart plays a crucial role in pumping blood to our organs. However, without early
detection of heart disease (HD), the outcomes can be fatal. That's why it is crucial to …

[HTML][HTML] A novel data augmentation approach for enhancement of ECG signal classification

MF Safdar, P Pałka, RM Nowak, A Al Faresi - Biomedical Signal Processing …, 2023 - Elsevier
The use of deep learning models in the classification of medical diseases has evolved
drastically in recent years. One such prominent application was in the classification of ECG …

Optimizing Electrocardiogram Signal Augmentation for Realistic Synthetic Data in Deep Learning Model

MF Safdar, P Pałka, A Al Faresi… - 2024 Signal Processing …, 2024 - ieeexplore.ieee.org
Electrocardiograms (ECG) are non-invasive signals and have proven useful in assessing
the heart condition. Given the necessity for extensive datasets in ECG classification using …

Spectrogram based Wi-Fi usage activity classification using deep learning

A Sarbu, S Șuhani, M Șorecău… - IOP Conference Series …, 2024 - iopscience.iop.org
The article presents and characterizes the ability of a neural network to distinguish between
different Wi-Fi activities based on their distinct spectral features. To achieve this objective …

ECG Signal Denoising Using 1D Convolutional Neural Network

A Rifai, MN Rachmamtullah… - … and Applications Journal, 2024 - comengapp.unsri.ac.id
Electrocardiogram (ECG) signals are crucial for monitoring cardiac activity and diagnosing
various cardiovascular conditions. However, these signals are often contaminated by …

[HTML][HTML] Предварительная обработка сигналов для мультимодальной классификации 12-канальных сигналов электрокардиограмм

МР Киладзе - Инженерный вестник Дона, 2024 - cyberleninka.ru
Автоматическая классификация сигналов электрокардиограмм позволит оказать
своевременную медицинскую помощь пациентам при оказании первой медицинской …

Gebeliğinde COVİD-19 enfeksiyonu geçiren anne bebeklerinin kardiyolojik açıdan değerlendirilmesi

TÖ Cevizci - 2023 - acikerisim.erbakan.edu.tr
Özet Coronavirüs hastalığı 2019 (COVID-19), Ocak 2020'de Çin'in Hubei eyaleti Wuhan'da
pnömoni salgını şeklinde başlayıp hızlı şekilde küresel sağlık sorunu haline gelen bir …

[PDF][PDF] Explainable AI based Predictions for Workpiece Quality

T STRAUB, M GUCKERT, U FIEDLER, S STRAUCH - ndt.net
It is well known that sound emissions of drilling and milling machines can be used to predict
process and work piece quality. Deep Learning models have successfully been applied for …